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Preface

These notes are being written for an introductory honors calculus class, Math
1551, at LSU in the Fall of 2011.

The approach is quite different from that of standard calculus texts. (In
fact if I had to choose a subtitle for these notes, it would be ‘An Anti-
calculus-text Book’.) We use natural, but occasionally unusual, definitions
for basic concepts such as limits and tangents. We also avoid several stranger
aspects of the universe of calculus texts, such as counterintuitive notions of
what counts as ‘local maximum’ or obsessing over ‘convex up/down’, and
stay with practice that is consistent with the way mathematicians actually
work. For most topics we show how to work with the method first and then
go deeper into proofs and finer points. We prove several results in sharper
formulations than seen in calculus texts. Among drastic departures from the
standard approaches we work with the extended real line R∗ = R∪{−∞,∞},
and define limits in such a way that no special exceptions need to be made
for limits involving ±∞. We follow a consistent strategy of using suprema
and infima, which form a running theme through the historical development
of the real line and calculus. An entire chapter is devoted to convexity.

For various corrections and comments I thank Justin Katz.
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Introduction

There are two fundamental notions that led to the development of calculus
historically: (i) the measurement of areas of curved regions, and (ii) the study
of tangents to curves. These apparently disconnected themes, formalized
in integral calculus and differential calculus, respectively, come together in
the fundamental theorem of calculus, that makes the subject so useful and
powerful.

Lengths of line segments are measured by comparing to a chosen ‘unit’
of length. For areas the natural extension would be to measure the area of
a region by counting the number of unit squares (squares with unit-length
sides) needed to cover the region exactly. This works very well for a rectangle.
Clearly a rectangle whose sides are of length 3 units and 4 units is covered
exactly by a 3× 4 grid of 12 unit squares. This leads naturally to

area of a rectangle = product of the lengths of its sides.

It requires only a few natural and simple steps to compute the area of a
triangle (realize it as made up of two halves of rectangles) and more generally
the area of a polygonal region.

This strategy fails when we think of a curved region, such as a disk.
There is surely no obvious way to cover a disk exactly with a finite number
of squares or pieces of squares. (Whether such slicing and reassembly of
regions is really possible, and in what sense, is a truly difficult problem.)
The solution to this problem for specific curved regions was already known
in the era of Greek mathematics. Consider non-overlapping squares lying
inside a disk. Surely the area of the disk is at least as large as the sum of
the areas of such squares:

areas of polygonal regions inside disk ≤ area of disk.

On the other hand, if we cover the disk with squares, which spill over to the
outside of the disk, and add up the areas of these squares we obtain an over
estimate of the area of the disk:

area of disk ≤ areas of polygonal regions covering disk.

Thus, the area of the disk ought to be

the unique value that lies between these overestimates and the
underestimates.
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This idea, of pinning down a value by realizing it as being squeezed in
between overestimates and underestimates is an enormously powerful idea,
running all through the foundations of calculus. We will use this idea persis-
tently in developing the basic notions of both integral calculus and differential
calculus.

Returning to the disk, it turns out that there is indeed such a unique
value lying between the underestimates and the overestimates. The area of
the disk scales up by a factor of 9 if the radius is scaled up by a factor of 3.
Indeed, the ratio of the area of the disk to that of the square on the radius
is the fundamental constant denoted

π.

The simplest underestimate for π is obtained by inscribing a square in the
unit circle so that the diagonal of the square is a diameter of the circle; each
side of this square has length

√
2 and so its area is 2. Next, drawing a square

with width given by the diameter of the circle gives an overestimate for the
area: 22. Thus

2 < π < 4.

Archimedes, working with a 96-sided polygon obtained the estimates:

3
1

7
< π < 3

10

71
.

Aside from such estimates a crucial point is that the overestimates and un-
derestimates can be made ‘arbitrarily’ close to each other; more precisely,
there can only be a unique number lying between the overestimates and un-
derestimates.

The value of π expressed as a decimal is:

π = 3.141 592 6 . . .

where the dots mean that the decimal continues endlessly. What this means
exactly is that π is the least number greater than all the finite decimal ap-
proximations listed through the decimal expansion. This expression, though
quite concrete, is frustrating in that there is no direct specificaton of, say,
what the 25-th decimal entry is. More informative are formulas such as

π = 4

[
1− 1

3
+

1

5
− 1

7
+ · · ·

]
,
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or the enormously efficient but mysterious Ramanujan formula

π =
9801

2
√

2
∑∞

n=0
(4n)!(1103+26390n)

(n!)4(396)4n

.

What exactly these formulas mean will become clear when we have studied
limits and infinite series sums.

The number π, originating in geometry, appears in a vast array of contexts
in physics, chemistry, engineering and statistics.

Archimedes was able to compute areas of more complex curved regions by
very careful estimations, encoded in his method of exhaustion for computing
areas. The great power of integral calculus is illustrated by the fact that it
turns the genius of Archimedes’ method into an utterly routine calculation
that a student of calculus can do in moments.



Chapter 1

Sets: Language and Notation

Set theory provides the standard foundation for nearly all of mathematics.
It is, however, an especially abstruse area in mathematics. In this chapter
we will learn some language and notation from set theory that is widely used
in mathematics.

1.1 Sets and Elements

A set, for practical purposes, is a collection of objects. These objects are
called the elements of the set. For example,

{−1, D, 5, 8}

is a set whose elements are−1, D, 5, and 8. This is a typical way of displaying
a set: list its elements, separated by commas, within the braces { and }.

Sometimes a set if best specified by describing its elements. For instance,

{x : x is a prime number less than 10}

is the same as the set
{2, 3, 5, 7}.

Occasionally, we will dispense with formality and simply write the descriptive
form of the set as

{all primes less than 10}.
The notation

x ∈ y

13
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says that x is an element of y. Thus,

3 ∈ {2, 3, 5, 8}.

On the other hand 4 is not an element of {2, 3, 5, 8}, and this is displayed as

4 /∈ {2, 3, 5, 8}.

Sets x and y are said to be equal, written

x = y

if every element of x is an element of y and every element of y is an elements
of x; in other words, sets are equal if they have the same elements.

Both {2, 3, 5, B} and {B, 5, B, 2, 3} display exactly the same set. If we
happen to repeat elements in one display or if we display the elements in a
different order it does not change the set. As another example,

{3, 5} = {5, 3}.

1.2 Everything from nothing

The empty set ∅ is the set that contains no elements at all:

∅ = { }. (1.1)

For the empty set any statement such as

a ∈ ∅

is false, for ∅ contains no element.
Notice that the set

{∅}

is not empty: it contains one element, that being ∅. This is a bit confusing,
so think it over. Thus:

{∅} 6= ∅ (1.2)

because the set on the left contains one element whereas the set on the right
doesn’t contain any element.
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In fact, {∅} has a name. It is just the mathematical definition of 1:

1
def
= {∅}. (1.3)

Having 1 and ∅ we can form another set:

{∅, 1}.

This, of course, is 2:

2
def
= {∅, 1}. (1.4)

In this way we obtain the numbers

0 = ∅, 1, 2, 3, . . . ,

which, together, form our first infinite set:

{0, 1, 2, 3, . . .}.

Here we have identified 0 and the empty set, but conceptually one thinks of
0 as ‘the number of elements’ in the empty set rather than ∅.

Much more can be done. The negative numbers

−1, −2, −3, . . .

can also be constructed as sets, and then the rational numbers, such as
−13/271. In fact, virtually every object in mathematics is a set.

There is, of course, much more to numbers than simply names given to
certain sets, but we will not pursue this direction further. It is also good to
keep in mind that our notion of numbers, both for counting and for ordering
(such as listing items as first, second, third, etc.) is ancient, whereas the
formalizing of this notion within set theory is barely over a hundred years
old.

1.3 Subsets

If x and y are sets, we say that x is a subset of y if every element of x is an
element of y; we denote this by

x ⊂ y.
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For instance,

{1, 2, 5, 6} ⊂ {0, 5, 6, 4, 7, 2, 3}.

Note that every set is a subset of itself:

x ⊂ x.

Here are a couple more simply observations:

• if x ⊂ y and y ⊂ x then x = y;

• if x ⊂ y and y ⊂ z then x ⊂ z.

Sometimes one gets confused between a ∈ b and x ⊂ y. These are different
notions. For example,

3 ∈ {1, 3, 5}

but 3 is not a subset of {1, 3, 5}. But here is a somewhat twisted example:
for the set

a = {1, {1}}

we have both

{1} ∈ a, and {1} ∈ a.

But this is unusual.

One can do strange things with the empty set, always using arguments
by contradiction. Here is a starter instance of this:

Proposition 1.3.1 The empty set is a subset of every set:

∅ ⊂ x for all sets x.

Proof. We argue by contradiction. Suppose x is a set and ∅ is not a subset
of x. This would mean that ∅ contains some element that is not in x. But ∅
contains no element at all. Thus we have a contradiction, and so ∅ is in fact
a subset of x. QED
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1.4 Union, Intersections, Complements

The union of sets x and y is the set obtained by pooling together their
elements into one set. The union is denoted

x ∪ y.

For example,
{1, 3, 5} ∪ {3, 5, 6, 7} = {1, 3, 5, 6, 7}.

One can do unions of any family of sets. For example,

{1} ∪ {1, 2} ∪ {1, 2, 3} ∪ . . . = {1, 2, 3, . . .}.

The intersection of sets x and y is the set containing the elements that
are both in x and in y, and is denoted

x ∩ y.

For example,
{1, 3, 5, 6} ∩ {2, 4, 6, 3, 8} = {3, 6}.

The intersection can be empty of course:

{2, 4, 5} ∩ {1, 3, 7} = ∅.

If the intersection of sets x and y is empty we say that x and y are disjoint.
One can take intersections of more than two sets as well:

{1, 5, 3, 6} ∩ {2, 3, 4} ∩ {3, 8, 9} = {3}.

Sometimes we are working within one fixed big set X. Then the comple-
ment of any given subset A ⊂ X is the set of elements of X not in A:

Ac = {p ∈ X : p /∈ A}.

1.5 Integers and Rationals

The numbers 0, 1, 2, 3, . . . along with their negatives form the set Z of integers:

Z = {0, 1,−1, 2,−2, 3,−3, . . .}. (1.5)
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Taking ratios of integers yields the rational numbers. Thus a rational
number can be expressed as

p/q,

where p and q are integers, with q 6= 0 of course. For example, −34/15 is
rational. The set of all rational numbers is denoted

Q = {p/q : p, q ∈ Z, q 6= 0}. (1.6)

As we know there is a whole algebra for the rationals: they can be added,
substracted, multiplied, divided (not by zero). Moreover, there is an order
relation on Q, telling us which of two given rationals is bigger.

For calculus we need the set R of all real numbers. This is a much larger
set than Q, as it contains irrational numbers such as

√
2 and π, in addition

to all the rational numbers.

1.6 Cartesian Products

The displays {a, b} and {b, a} describe the same set, but sometimes we need
to express a appearing first followed by b. For this purpose there is the notion
of an ordered pair:

(a, b).

There are a number of ways to construct a set out of a and b, reflecting the
distinction between them; a simple (though certainly not obvious) strategy
is to define

(a, b) = {{a}, {a, b}}. (1.7)

We can check that, with this definition,

(a, b) = (c, d) if and only if a = c and b = d.

Thus, for instance,
(1, 3) 6= (3, 1).

Next, from sets A and B we can construct the set of all ordered pairs (a, b),
drawing the first entry a from A, and the second entry b from B:

A×B = {(a, b) : a ∈ A, b ∈ B}. (1.8)
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This is called the Cartesian product of A with B. For example,

{2, 5, 6} × {d, g} = {(2, d), (2, g), (5, d), (5, g), (6, d), (6, g)}.

The Cartesian product of a set A with itself is denoted A2:

A2 = A× A. (1.9)

Thus the plane, coordinatized by real numbers, can be modeled mathemati-
cally as

R2 = {(x, y) : x ∈ R, y ∈ R}. (1.10)

1.7 Mappings and Functions

In calculus we work with functions specified by formulas such as

y = x3 + x2 + 1.

This relation is not read as simply an equality of two quantities y and x3 +
x2 + 1, but rather as a procedure for computing one quantity from the value
of another:

given the value x = 2 we compute y = 23 + 22 + 1 = 13.

Thus what we have here is a prescription: an input value for x leads to
an ouput value y. Of course, the letters x and y are in themselves of no
significance; the same function is specified by

s = t4 + t2 + 1.

Sometimes a function is specified not by a formula but by an explicit descrip-
tion; for example,

1prime(m) =

{
1 if m is a prime number;

0 if m is not a prime number.

specifies a ‘function of m’, where m runs over the positive integers. For
example,

1prime(5) = 1, and 1prime(4) = 0.
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To formalize the notion of a function as producing an output value from
an input value drawn from some given set in set language, observe that the
function is essentially known completely if we are given the value f(t) for
every relevant t; this information can be encoded by providing the set

{
(
t, f(t)

)
: t running over a given set of interest}.

Note that to keep things unambiguous, f(t) should mean exactly one unique
value, and not multiple values. Thus, for example,

y = ±
√

1− x2

is a relation containing meaningul information but we will not use the term
‘function’ for this.

We can now turn to a formal definition that reflects this notion.
A map, mapping, or function

f : A→ B

is specified by a set A, called the domain of f , a set B, called the codomain
of f , and a set Gr(f) of ordered pairs (a, b), with a ∈ A and b ∈ B, such
that for each a ∈ A there is a unique b ∈ B for which (a, b) ∈ Gr(f). If
(a, b) ∈ Gr(f) we denote b by f(a):

b = f(a) means (a, b) ∈ Gr(f).

The set Gr(f) is the graph of the mapping f .
The term function is used normally, instead of mapping, in calculus.
In order to make progress we also need to use language shortcuts. For

example, instead of saying the function, with domain and codomain the set
of real numbers and having graph

{(a, a2) : a ∈ R},

we often simply write
the function y = x2,

it being clear, unless otherwise spelled out, that x runs over all real numbers.
Thus, when we say

the function y = x
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x

y y = x

Figure 1.1: Graph of y = x

x

y

y = x3 − x2 − 2x+ 1

Figure 1.2: Graph of y = x3 − x2 − 2x+ 1

we mean the function x whose value at any p is p itself; for instance,

x(3) = 3, x(−4.75) = −4.75.

The graph of y = x is displayed visually as a straight line:
The graph of y = x3 − x2 − 2x+ 1 is displayed visually as
Often in calculus, the codomain is clear from context (usually, the set

R of all real numbers) and we identify a function with its graph, ignoring
specification of the codomain.

The range of a function f is the set of all values it takes:

Range(f) = {f(a) : a ∈ domain of f }.

For example, for the function

y = x2 for all real numbers x,

the range is the set of all non-negative real numbers

[0,∞).
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For the function 1prime we considered before, the range is the set {0, 1}:

Range(1prime) = {0, 1}.

Returning to our earlier example

y = ±
√

1− x2,

observe that this is equivalent to

x2 + y2 = 1.

This can be viewed as its graph:

{(x, y) ∈ R : x ∈ R, y ∈ R},

which is the circle of unit radius, centered at the origin (0, 0).

C

P

(1, 0)

Figure 1.3: Graph of the circle x2 + y2 = 1.
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1.8 Sequences

A function whose domain is the set

N = {1, 2, 3, . . .}

of positive integers is called a sequence. For example,

f : N→ R : n 7→ 1

n

is a sequence. It is conventional to use n in place of x, and write fn in place
of f(n). In the preceding example we may describe it as

the sequence fn = 1/n,

or, more formally, as

the sequence (fn)n≥1 where fn = 1/n,

or, most simply, as
the sequence 1/n.

Here you have to underdstand from the context that n runs over N, and we
are, strictly speaking, talking about the function that associates 1/n to every
n ∈ N. The way to think about the sequence is to think of it as a list of its
values:

1

1
,

1

2
,

1

3
,

1

4
, . . .

Sometimes there is no ‘formula’ for the n-th term; for example,

the sequence pn = n-th prime number.

(There are infinitely many prime numbers and so this does indeed specify a
sequence.)

In some contexts it is useful to take the domain of a sequence to include
0 as well. For example, the factorials

fn = n! for all n ∈ {0, 1, 2, . . .}

are secified by

0! = 1, 1! = 1, 2! = 1!2 = 2, 3! = 2!·3 = 1·2·3, (n+1)! = n!·(n+1).
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Chapter 2

The Extended Real Line

In this chapter extend the real line R by including a largest element∞ and a
smallest element −∞. Using these makes it possible to write many theorems
in a simpler way, without having a list of qualifiers of which situations need
to be excluded.

2.1 The Real Line

The numbers 0, 1, 2, . . . arise from the notion of counting. From these it
is possible to construct negative numbers −1,−2, . . . and then the rational
numbers.

Geometry leads us beyond the rationals and forces us to bring in other
numbers. Consider straightline l, and on it pick a special point O and another
point U .

O

U

P
corresponds to the
real number OP/OU

R

Figure 2.1: Real numbers as ratios of segments

25
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Then for any point P on the line l we can think of the geometical concept
of the ratio

OP/OU,

where we take this to be negative if P is on the opposite side of O from
U . Such ratios can be added and multiplied by using geometric construc-
tions (these geometric operations on segments were described in Euclid’s
Elements). Thus they form a system of numbers called the real numbers.

For example, if P is just the point U then the ratio

OP/OU = OU/OU

corresponds to the number 1. Similarly, we have points P for which OP/OU
is a rational such as −4/7. But there are also points P for which OP/OU
cannot be expressed as a ratio of integers.

For example, consider a right angled triangle that has two sides of length
OU . Then the diagonal is, by Pythagoras’ theorem, has the ratio to OU
given by

√
2. It is a fact that

√
2 is not a rational number, in that there is

no rational number whose square is 2.
The rationals are dense in the real line: between any two distinct reals

there lies a rational. The irrationals are also dense in the real line: between
any two distinct reals lies an irrational.

2.2 The Extended Real Line

The extended real line is obtained by a largest element ∞, and a smallest
element −∞, to the real line R:

R∗ = R ∪ {−∞,∞} (2.1)

Here ∞ and −∞ are abstract elements. We extend the order relation to R
by declaring that

−∞ < x <∞ for all x ∈ R (2.2)

Much of our work will be on R∗, instead of just R.
We define addition on R∗ as follows:

x+∞ = ∞ =∞+ x for all x ∈ R∗ with x > −∞ (2.3)

y + (−∞) = −∞ = (−∞) + y for all y ∈ R∗ with y <∞. (2.4)
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Note that
∞+ (−∞) is not defined,

which just means that there is no useful or consistent definition for it.
For multiplication we set

x · ∞ = ∞ =∞ · x for all x ∈ R∗ with x > 0 (2.5)

x · (−∞) = −∞ = (−∞)·x for all x ∈ R∗ with x < 0. (2.6)

It is a bit dangerous to define ∞ · 0. However, playing it very carefully, it
turns out to be useful to set

∞ · 0 = 0 · ∞ = 0

(−∞) · 0 = 0 · (−∞) = 0.
(2.7)

This convention is quite useful when we study integration theory, but it
should not be used in other parts of calculus, such as the study of limits.
A definition, aside from being an identification of a distinctive concept, is
meaningful and necessary only in so far as it is useful in formulating results.
For example, 0/0 is undefined not because somehow we have arbitrarily de-
cided not to define it, but any definition for it would be a dead end, of no
use elsewhere in mathematics.

Some familiar algebraic facts are still valid in R∗:

x+ y = y + x, x+ (y + z) = (x+ y) + z, (2.8)

whenever either side of these equations exist (that is we don’t have∞+(−∞)
appearing).
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Chapter 3

Suprema, Infima, Completeness

In this chapter we examine a fundamental property of the real line that
distinguishes it from the rationals and that makes much of calculus possible.
This property is called completeness, and roughly it means that the real line
has no ‘gaps’ or ‘holes’.

3.1 Upper Bounds and Lower Bounds

Consider a set S ⊂ R∗.
A point p ∈ R∗ is an upper bound of S if it lies to the right of S:

x ≤ p for all x ∈ S.

For example, for the set

{3, 4, 6} ∪ (8, 9]

upper bounds are all numbers ≥ 9. Note that 9 is also an upper bound.
For the entire real line R the only upper bound is∞. If we had restricted

ourselves to working only with real numbers then R would not have an upper
bound.

Note that ∞ is an upper bound for every subset of R∗.
Here is a mind twister for the empty set: 3 is an upper bound for ∅. As

usual, to prove this we argue by contradiction. Suppose 3 were not an upper
bound of ∅. This would mean that 3 is less than some x ∈ ∅:

3 < x for some x ∈ ∅.

29
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But the empty set has no element and so no such x exists. Thus, 3 must
indeed be an upper bound for ∅.

Is there anything special about 3 in the preceding argument? Definitely
not! Thus:

every value in [−∞,∞] is an upper bound of ∅.

Now we turn to the flip side of the concept of upper bound. A point
p ∈ R∗ is a lower bound of S if it lies to the left of S:

p ≤ x for all x ∈ S.

Thus, for example, for the set

(8, 9] ∪ [11,∞)

all p ≤ 8 are lower bounds. Note that 8 is also a lower bound.
The value −∞ is a lower bound for every subset of R∗.
Returning to the strange case of the empty set the same logical gymnastics

show that every value in [−∞,∞] is a lower bound of ∅.

3.2 Sup and Inf: Completeness

Consider any S ⊂ R∗.
The smallest upper bound of S, that is the least upper bound of S, is

called the supremum of S and denoted

supS.

For example,

sup(8, 9] ∪ [11,∞) =∞.

The largest lower bound, that is the greatest lower bound, of S is called
its infimum and denoted

inf S.

With the example above we have

inf(8, 9] ∪ [11,∞) = 8.
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If you think about the empty set, a strange thing happens. Recall that
every value in R∗ is an upper bound of ∅ and so the least upper bound is
−∞:

sup ∅ = −∞.

Similarly,
inf ∅ =∞.

Thus, the supremum of the empty set is actually less than the infimum!
Here is a fundamental property of R∗:

Every subset of R∗ has a supremum and an infimum. (3.1)

This is called the completeness of R∗.
If we want to stay within just the set of real numbers, the statement is a

little bit more complicated so as to rule out all the infinities:

If A ⊂ R is not empty and has an upper bound then it has a supremum,
(3.2)

and an analogous statement holds for the infimum.
The completeness of R is a crucial property. It does not hold for rationals:

roughly speaking if we draw Q on a line there will be lots and lots of holes,
for instance the point where

√
2 would be missing. Many of the great useful

results of calculus would fail on Q just for this reason.
The completeness property can be taken to be an axiom in one approach

to the study of the real number system. But in another, more construc-
tive ,approach, where R is constructed out of set theory, completeness is a
property that is proved as a fundamental theorem about R.

3.3 More on Sup and Inf

Consider a non-empty set S ⊂ R∗. Pick some point p in S. Then any lower
bound of S is ≤ p and every upper bound of S is ≥ p:

any lower bound of S ≤ p ≤ any upper bound.

In particular,

the greatest lower bound of S ≤ p ≤ the least upper bound.
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Thus,
inf S ≤ p ≤ supS for all p ∈ S.

If S contains just one point then the inf and sup coincide: for example,

inf{3} = 3 = sup{3}.

On the other hand

inf S < supS if S contains more than one point. (3.3)

Now consider another situation. Consider sets

B ⊂ A ⊂ R∗.

Thus everything in B is also in A. Any upper bound of A is ≥ all elements
of A and hence is ≥ all elements of B. Thus:

every upper bound of A is an upper bound of B.

In particular,

the least upper bound of A is an upper bound of B.

In other words:
supA is an upper bound of B.

So, of course,
the least upper bound of B is ≤ supA.

Thus,
supB ≤ supA if B ⊂ A. (3.4)

Picking a smaller set decreases the supremum, where smaller means that it
is contained in the larger set. (‘Decreases’ is in a lose sense here, as it may
happen that supA is equal to supB.)

By a similar reasoning we have

inf A ≤ inf B if B ⊂ A. (3.5)

Picking a smaller set increases the infimum, with qualifiers as before.



Chapter 4

Neighborhoods, Open Sets and
Closed Sets

In this chapter we study some useful concepts for studying the concept of
nearness of points in R∗.

4.1 Intervals

An interval in R∗ is, geometrically, just a segment in the extended real line.
For example, all the points x ∈ R∗ for which 1 ≤ x ≤ 2 is an interval. More
officially, an interval J is a non-empty subset of R∗ with the property that
for any two points of J all points between the two points also lie in J : if
s, t ∈ J , with s < t, and if s < p < t then p ∈ J .

Let J be an interval, a its infimum and b its supremum:

a = inf J, and b = sup J.

Consider any point p strictly between a and b. Since a < p, the point p is
not a lower bound and so there is a point s ∈ J with s < p. Since b > p,
the point p is not an upper bound, and so there is a point t ∈ J with p < t.
Thus

s < p < t.

Since s, t ∈ J it follows that p, being between s and t, is also in J . The
endpoints a and b themselves might or might not be in J . Thus we have the

33
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following possibilities for J :

[a, b]
def
= {x ∈ R∗ : a ≤ x ≤ b}

[a, b)
def
= {x ∈ R∗ : a ≤ x < b}

(a, b]
def
= {x ∈ R∗ : a < x ≤ b}

[a, b)
def
= {x ∈ R∗ : a < x < b}.

(4.1)

An interval of the form [a, b] is called a closed interval, and an interval of
the form (a, b) is called an open interval. Thus a closed interval contains it
two endpoints, while an open interval contains neither endpoint.

4.2 Neighborhoods

A neighborhood of a point p ∈ R is an interval of the form

(p− δ, p+ δ)

where δ > 0 is any positive real number. For example,

(1.2, 1.8)

is a neighborhood of 2.
A typical neighborhood of 0 is of the form

(−ε, ε)

for any positive real number ε.
A neighborhood of ∞ in R∗ = R ∪ {−∞,∞} is a ray of the form

(t,∞] = {x ∈ R∗ : x > t}

with t any real number. For example,

(5,∞]

is a neigborhood of ∞.
A neighborhood of −∞ in R∗ is a ray of the form

[−∞, s) = {x ∈ R∗ : x < s}
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where s ∈ R. An example is
[−∞, 4)

Observe that if U and V are neighborhoods of p then U ∩ V is also a
neighborhood of p. (In fact, for the type of neighborhoods we have been
working with, either U contains V as a subset of vice versa, and so U ∩ V is
just the smaller of the two neighborhoods.)

Observe also that if N is a neighborhood of a point p, and if q ∈ N then q
had a neighborhood lying entirely inside N . For example, the neighborhood
(2, 4) of 3 contains 2.5, and we can form the neighborhood (2, 3) of 2.5 lying
entirely inside (2, 4).

Here is a simple but fundamental observation:

Distinct points of R∗ have disjoint neighborhoods. (4.2)

This is called the Hausdorff property of R∗.
For example, 3 and 5 have the neighborhoods

(2, 4) and (4.5, 5.5)

The points 2 and ∞ have disjoint neighborhoods, such as

(−1, 5) and (12,∞]

Exercise Give examples of disjoint neighborhoods of

(i) 2 and −4

(ii) −∞ and 5

(iii) ∞ and −∞
(iv) 1 and −1

4.3 Types of points for a set

Consider a set
S ⊂ R∗.

A point p ∈ R∗ is said to be an interior points of S if it has a neighborhood
U lying entirely inside S:

U ⊂ S.
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For example, for the set

E = (−4, 5] ∪ {6, 8} ∪ [9,∞],

the points −2, 3, 11 are interior points. The point∞ is also an interior point
of E.

A point p is an exterior point if it has a neighborhood U lying entirely
outside S:

U ⊂ Sc.

For example, for the set E above, points −5, 7, and −∞ are exterior to E.
A point that is neither interior to S nor exterior to S is a boundary point

of S. Thus p is a boundary point of S if every neighborhood of p intersects
both S and Sc.

In the example above, the boundary points of E are

−4, 5, 6, 8, 9, ∞.

Next consider the set
{3} ∪ (5,∞)

The boundary points are 3, 5, and ∞. It is important to observe that if we
work with the real line R instead of the extended line R∗ then we must exclude
∞ as a boundary point, because it doesn’t exist as far as R is concerned.

Example For the set A = [−∞, 4) ∪ {5, 9} ∪ [6, 7), decide which of the following
are true and which false:

(i) −6 is an interior point (T)

(ii) 6 is an interior point (F)

(iii) 9 is a boundary point (T)

(iv) 5 is an interior point (F)

Ecxerise For the set B = [−∞,−5) ∪ {2, 5, 8} ∪ [4, 7), decide which of the fol-
lowing are true and which false:

(i) −6 is an interior point

(ii) −5 is an interior point

(iii) 5 is a boundary point

(iv) 4 is an interior point

(v) 7 is a boundary point.



DRAFT Calculus Notes 11/17/2011 37

4.4 Interior, Exterior, and Boundary of a Set

The set of all interior points of a set S is denoted

S0

and is called the interior of S.
The set of all boundary points of S is denoted

∂S

and is called the boundary of S.
The set of all points exterior to S is the exterior of S, and we shall denote

it
Sext.

Thus, the whole extended line R∗ is split up into three disjoint pieces:

R∗ = S0 ∪ ∂S ∪ Sext (4.3)

Recall that a point p is on the boundary of S if every neighborhood of
the point intersects both S and Sc. But this is exactly the condition for p to
be on the boundary of Sc. Thus

∂S = ∂Sc. (4.4)

The interior of the entire extended line R∗ is all of R∗. So

∂R∗ = ∅.

Moreover,
∂∅ = ∅.

At another extreme of unexpected behavior is the set Q of rational num-
bers. If you take any neighborhood U of any point in R∗ then U contains
both rational numbers and irrational numbers. Thus, every point in R∗ is a
boundary point of Q:

∂Q = R∗.

Example For the set A = [−∞, 4) ∪ {5, 9} ∪ [6, 7),

(i) A0 = [−∞, 4) ∪ (6, 7)
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(ii) ∂A = {4, 5, 9, 7, 6}
(iii) Ac = [4, 5) ∪ (5, 6) ∪ [7, 9) ∪ (9,∞]

(iv) the interior of the complement Ac is

(Ac)0 = (4, 5) ∪ (5, 6) ∪ (7, 9) ∪ (9,∞]

For the set
G = (3,∞)

the boundary of G, when viewed as a subset of R∗, is

∂G = {3,∞}.

But if we decide to work only inside R then the boundary of G is just {3}.

Excerise For the set B = {−4, 8} ∪ [1, 7) ∪ [9,∞),

(i) B0 =

(ii) ∂B =

(iii) Bc =

(iv) the interior of the complement Bc is

(Bc)0 =

4.5 Open Sets and Topology

We say that a set is open if it does not contain any of its boundary points.
For example,

(2, 3) ∪ (5, 9)

is open. The set
(3, 4]

is not open, because it contains 4, which is a boundary point. On the other
hand

(4,∞]

is open (even though it is not what is usually called ‘an open interval’).
The entire extended line R∗ is open, because it has no boundary points.
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The empty set ∅ is open, because, again, it doesn’t have any boundary
points.

Notice then that every point of an open set is an interior point. Thus, a
set S is open means that

S0 = S.

Thus for an open set S each point has a neighborhood contained entirely
inside S. In other words, S is made up of a union of neighborhoods.

Viewed in this way, it becomes clear that the union of open sets is an
open set.

It can also be verified that:
The intersection of a finite number of open sets is open.

Exerise Check that the intersection of the sets (4,∞) and (−3 5) and (2, 6) is
open.

The collection of all open subsets of R is called the topology of R.
The set of all open subsets of R∗ is called the topology of R∗.

4.6 Closed Sets

A set S is said to be closed if it contains all its boundary points.
In other words, S is closed if

∂S ⊂ S

Thus,
[4, 8] ∪ [9,∞]

is closed.
But

[4, 5)

is not closed because the boundary point 5 is not in this set.
The set

[3,∞)

is not closed (as a subset of R∗) because the boundary point ∞ is not inside
the set. But, viewed as a subset of R it is closed. So we need to be careful in
deciding what is close and what isn’t: a set may be closed viewed as a subset
of R but not as a subset of R∗.
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The full extended line R∗ is closed.
The empty set ∅ is also closed.
Note that the sets R∗ and ∅ are both open and closed.

4.7 Open Sets and Closed Sets

Consider a set S ⊂ R∗.
If S is open then its boundary points are all outside S:

∂S ⊂ Sc.

But recall that the boundary of S is the same as the boundary of the com-
plement Sc. Thus, for S to be open we must have

∂(Sc) ⊂ Sc,

which means that Sc contains all its boundary points. But this means that
Sc is closed.

Thus, if a set is open then its complement is closed.
The converse is also true: if a set is closed then its complement is open.

Thus,

Theorem 4.7.1 A subset of R∗ is open if and only if its complement is
closed.

Exercise. Consider the open set (1, 5). Check that its complement if
closed.

Exercise. Consider the closed set [4,∞]. Show that its complement is
open.

4.8 Closed sets in R and in R∗

The set
[3,∞)

is closed in R, but is not closed in R∗. This is because in R it has only the
boundary point 3, which it contains; in contrast, in R∗ the point ∞ is also a
boundary point and is not in the set. Thus, when working with closed sets it
is important to bear in mind the distinction between being closed in R and
being closed in R∗. There is no such distinction for open sets.



Chapter 5

Magnitude and Distance

5.1 Absolute Value

The absolute value or magnitude of x∗ ∈ R is the measure of how large x is,
without regard to its sign; the absolute value of x is defined by

|x| =

{
x if x ≥ 0;

−x if x < 0.
(5.1)

In the second line −x helps flip the sign of a negative value of x to a positive
one:

| − 3| = −(−3) = 3.

Note that

|0| = 0

and

|x| ≥ 0 for all x ∈ R∗.

Another observation that comes in handy occasionally is:

− |x| ≤ x ≤ |x| for all x ∈ R∗, (5.2)

and in fact, of course, x is equal to either |x| (if x ≥ 0) or −|x| (if x < 0).
This gives another useful specification of |x|:

|x| is the larger of the numbers x and −x.
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As a formula this is:

|x| = max{x,−x} for all x ∈ R. (5.3)

In other words, |x| is x or −x, whichever is ≥ 0.
It is clear that

| − x| = |x| for all x ∈ R∗. (5.4)

5.2 Inequalities and equalities

If we take two non-negative numbers, say 3 and 5 then we have

|3 + 5| = 8 = |3|+ |5|.

The same works if both numbers are negative:

|(−3) + (−5)| = 8 = | − 3|+ | − 5|.

But if one is positive and the other negative then the sum of the absolute
values wins out over the absolute value of the sum:

|5 + (−3)| = 2 < |5|+ | − 3|.

We can summarize this in the triangle inequality for magnitudes:

|a+ b| ≤ |a|+ |b|, (5.5)

for all a, b ∈ R∗ excluding, as always, the cases ∞ + (−∞) and (−∞) +∞.
Here is a proof of this: since |a + b| is the larger of a + b and −(a + b), we
just need to show that both of these are ≤ the sum |a|+ |b|. For this observe
first that

a+ b ≤ |a|+ |b| because a ≤ |a| and b ≤ |b|
and then observe that

−(a+ b) = (−a) + (−b) ≤ |a|+ |b| because −a ≤ |a| and −b ≤ |b|.

Thus both a+ b and −(a+ b) are less or equal to |a|+ |b|, and so the larger
of a+ b and −(a+ b) is ≤ |a|+ |b|. This proves (5.5).

For multiplication we have equality of absolute values:

|ab| = |a||b| (5.6)

for all a, b ∈ R∗. You can check this by considering all possible choices of
signs for a and b.
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5.3 Distance

The distance between two real numbers a and b is the magnitude of a− b:

d(a, b)
def
= |a− b|. (5.7)

Here are two basic properties of distance:

d(a, a) = 0 for all a ∈ R, (5.8)

and
if d(a, b) = 0 then a = b. (5.9)

There is a third, less obvious, property that is called the triangle inequality
that is of great use:

d(a, c) ≤ d(a, b) + d(b, c) for all a, b, c ∈ R. (5.10)

This follows from the triangle inequality for mangitudes:

d(a, c) = |a− c|+ |a− b + b− c| ≤ |a− b|+ |b− c| = d(a, b) + d(a, c).

The specific measure of distance given by (5.7) is completely natural and
intuitive but does not extend nicely to R∗. Other measures of distance can
be constructed that work on R∗.

5.4 Neighborhoods and distance

Consider a point p ∈ R and a neighborhood of p given by

(p− δ, p+ δ) = {x ∈ R : p− δ < x < p+ δ},

where δ is a positive real number. Clearly this neighborhood consists exactly
of those points x whose distance from p is less than δ. Thus we have

(p− δ, p+ δ) = {x ∈ R : |x− p| < δ} = {x ∈ R : d(x, p) < δ}. (5.11)
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Chapter 6

Limits

The concept of limit is fundamental to calculus. It is very easy to grasp
intuitively but quite difficult to pin down in a completeley precise mathe-
matical way. For example, anyone would agree that x2 approaches 9 when x
approaches 3; but explaining exactly what this means is a subtle matter. In
a first run through the theory it may in fact be practical to give up on this
precise specification and just rely on intuition. But using out technology of
sup and inf makes it somewhat easy to come to grips with the exact meaning
of x2 → 4 asn x→ 3.

For the discussions in this chapter and also elsewhere there is some no-
tational care that is needed in working with values f(x) of a function f .
Clearly for such quantities, the point x itself must be in the domain of f .
Consider a function f with domain S ⊂ R, and let p be a point in S. If U is
a neighborhood of p then part of U might not be inside S, and so when we
speak of the values of f on U we need to focus on f(x) for x ∈ U ∩ S. For
instance, the function f given by

f(x) =
√
x for x ∈ [0,∞)

has domain S = [0,∞), and if we take p to be the point 0 then a typical
neighborhood, such as (−.01, .01) of p, falls partly outside S. Putting the
restrciction x ∈ U ∩ S makes it possible to talk about the value f(x).
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6.1 Limits, Sup and Inf

Consider the function g defined on all real numbers through the formula

g(x) =

{
x3 if x 6= 2

0 if x 6= 2.

Intuitively it is clear that as x approaches 2 the value g(x) approaches 23 = 8;
note that the actual value g(2), which is given to be 0, is irrelevant to this.
We write this symbolically as

g(x)→ 8 as x→ 2

or, even more compactly, as

lim
x→2

g(x) = 8.

We read this as “g(x) has the limit 8 as x approaches 2’.
Our goal is to pin down the exact meaning of this. For this consider the

behavior of the values g(x) when x is restricted to some neighborhood, say
(1.5, 2.5) of 2, again ignoring the actual value g(2):

{g(x) : x ∈ (1.5, 2.5) and x 6= 2}.

How high does g(x) get here? Clearly it is

sup{g(x) : x ∈ (1.5, 2.5) and x 6= 2} = (2.5)3 = 15.625

and, on the lower side we have

inf{g(x) : x ∈ (1.5, 2.5) and x 6= 2} = (1.5)3 = 3.375.

There is a simpler notation for these sups and infs:

sup
x∈(1.5,2.5),x 6=2

g(x) = 15.625

inf
x∈(1.5,2.5),x 6=2

g(x) = 3.375.

We can improve our understanding of the behavior of g(x) for x approaching
2 by focusing on a smaller neighborhood of 2, say (1.9, 2.1). For this we have

sup
x∈(1.9,2.1),x 6=2

g(x) = 9.261

inf
x∈(1.9,2.1),x 6=2

g(x) = 6.859
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As we have shrunk the neighborhood the supremum has decreases and the
infimum has increased. But notice that the number 8 (our suspect for the
limit) lies between the sup and the inf in both cases. Indeed intuition, and in
this case easy verification, suggests that:

the limit limx→2 g(x) always lies between the sup and inf of the
values of g(x) on neighborhoods of 2 (always excluding the value
x = 2).

In fact,
lim
x→2

g(x)

is the unique value that lies between the sup and inf of the values of g(x) on
all neighborhoods of 2 (always excluding the value x = 2).

This provides us with an official definition of limit:

Definition 6.1.1 Let g be a function defined on a set S ⊂ R and let p be
any point in R∗. We say that g(x) approaches the limit L ∈ R∗ as x → p,
writing this as

lim
x→p

g(x) = L,

if L is the unique value that lies between the sups and infs of the values of g
in neighborhoods of p (excluding p itself):

inf
x∈U∩S,x6=p

g(x) ≤ L ≤ sup
x∈U∩S,x6=p

g(x) (6.1)

The reason for using x ∈ U ∩ S is that g(x) is only be defined for x in the
set S. On eother point is that if in fact U ∩ S contains no point other than
p then the inf and sup in (6.1) are over the empty set and so (6.1) can never
hold (for the left side is ∞ and the right side is −∞) for any value of L and
so the limit does not exist in this case. Thus there is no possibility of the
limit existing if p is not a limit point of S. It is best not to worry about these
fine points too much at this stage.

A note of caution: the above definition is not the standard one but is
equivalent to it.

Official definitions of the notion of limit are useful in proving theorems but
nearly useless in actually computing limits except for very simple functions.
We look at two such simple examples now just to make sure the definition
produces values in agreement with common sense.



48 Ambar N. Sengupta 11/6/2011

Take for a starter example, the constant function

K(x) = 5 for all x ∈ R.

We want to make sure that the official definition 6.1.1 does imply that

lim
x→3

K(x) = 5.

To check this consider any neighborhood of 3:

(3− δ, 3 + δ),

where δ is any positive real number. Then

sup
x∈(3−δ,3+δ),x 6=3

K(x) = 5

because the set of values K(x) is just {5}, and also

inf
x∈(3−δ,3+δ),x 6=3

K(x) = 5.

Thus the only value that lies between the sup and the inf is 5 itself, and
hence

lim
x→3

K(x) = 5.

Now let us move to the function

f(x) = x for all x ∈ R.

We would like to make sure that Definition 6.1.1 does imply that limx→6 f(x)
is 6. Consider the neighborhood

(6− δ, 6 + δ),

where δ is a positive real number. Then

{f(x) : x ∈ (6− δ, 6 + δ)} = {x : x ∈ (6− δ, 6 + δ)},

which is just the interval (6− δ, 6 + δ), but with the point 6 excluded. Hence
its sup is 6 + δ and its inf is 6 − δ. What value lies between these two no
matter what δ is ? Certainly it is 6:

inf
x∈(6−δ,6+δ),x 6=6

f(x) < 6 < sup
x∈(6−δ,6+δ),x 6=6

f(x).
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Hence,

lim
x→6

f(x) = 6.

In fact, it is clear that

lim
x→p

x = p,

for every p ∈ R∗. (The case p = ∞ or p = −∞ requires a special, but
not difficult, argument, because neighborhoods of these points look different
from the usual (p− δ, p+ δ) form.)

Before moving on the fancier explorations here is a warning on notation.
There is nothing special about x, which we have been using in writing limits.
Instead of limx→p f(x) we could just as well write limy→p f(y) or limw→p f(w):

lim
x→p

f(x) = lim
y→p

f(y) = lim
w→p

f(w) = lim
blah→p

f(blah).

The only rule about notation is that it must be consistent: never use the
same letter to mean two different things in the same equation or statement!

6.2 Limits for 1/x

Common sense shows that

1/x→ 0, as x→∞.

We will first show that

inf
x∈(t,∞)

1

x
= 0,

for any positive real number t.
Since 1/x > 0 when x is positive, 0 is a lower bound for such 1/x and so

the greatest lower bound is ≥ 0:

inf
x∈(t,∞)

1

x
≥ 0.

We need only show that this inf cannot be > 0. Denote the inf by b:

b = inf
x∈(t,∞)

1

x
.
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Suppose b > 0. Now
1

x
< b

whenever x > 1/b. So if we take some real number y larger than both 1/b
and t, say y = t+ 1/b, then this x is in (t,∞) and is also > 1/b and so

1

y
< b.

Consequently,

inf
x∈(t,∞)

1

x
< b.

This is impossible, since it is sayng b < b. Hence

inf
x∈(t,∞)

1

x
= 0.

This holds for all real t > 0. Hence the value 0 satisfies

inf
x∈(t,∞],x 6=∞

1

x
≤ 0 ≤ sup

x∈(t,∞],x 6=∞

1

x

for all positive real t. (It is a tiresome check to see that it holds also for
t ≤ 0, keeing in mind that x = 0 is excluded from the domain of 1/x.) Hence

lim
x→∞

1

x
= 0. (6.2)

A similar argument shows that

lim
x→−∞

1

x
= 0. (6.3)

There are two more limits associated with 1/x. Taking 1/x only on the
domain of positive values of x we have

lim
x→0,x>0

1

x
=∞, (6.4)

and focusing on negative values we have

lim
x→0,x<0

1

x
= −∞. (6.5)
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These are usually written as

lim
x→0+

1

x
=∞

lim
x→0−

1

x
= −∞.

(6.6)

The limit of 1/x as x → 0 does not exist. You can check that in any
neghborhood of 0, excluding the value x = 0 itself, the sup of 1/x is ∞
whereas the inf of 1/x is −∞, and so there is no unique value between these
two extremes.

6.3 A function with no limits

Recall the set Q of all rational numbers :

Q = {all rationals}.

This is dense in R:

every open interval in R contains rational points.

The same is true of the irrationals :

every open interval in R contains irrational points.

Consider the indicator function of Q, taking the value 1 on rationals and
0 on irrationals:

1Q(x) =

{
1 if x ∈ Q;

0 if x /∈ Q;
(6.7)

If you take any p ∈ R and any neigborhood U of p it is clear that

sup
x∈U,x6=p

1Q(x) = 1 and inf
x∈U,x 6=p

1Q(x) = 0.

Thus there can be no unique value between these sups and infs, and so

limx→p 1Q(x) does not exist for any p ∈ R.
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6.4 Limits of sequences

Recall that a sequence s is a function whose domain is the set N = {1, 2, 3, . . .}
(and occasionally, we permit 0 in the domain). The value of the function s
on the number n ∈ N is denoted by

sn

rather than s(n), and the function itself is generally written as

(sn)n≥1

rather than s.
Our definition of the limit limx→p f(x) makes sense for any function f

with domain some subset S of R and with p being a limit point of S. Thus
we can apply to the case of sequences, with S being N and p = ∞. For a
sequence (sn)n≥1 we are interested in the limit

lim
n→∞

sn.

For example,

lim
n→∞

1

n
= 0.

It is easy to believe that

lim
n→∞

2n =∞. (6.8)

One way to prove this officially is by using the inequality

2n > n for all n ∈ {1, 2, 3, . . .}. (6.9)

(2n is the total number of subsets that an n-element set, such as {1, 2 . . . , n},
has, and clearly this is more than n itself since each of the n elements itself
provides a subset.)

As a consequence of (6.8) we have

lim
N→∞

1

2N
= 0.

Sometimes we work with infinite series sums: for a sequence (sn)n≥1 the
series sum

∞∑
n=1

sn
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is defined to be
∞∑
n=1

sn = s1 + s2 + · · · = lim
N→∞

SN , (6.10)

where SN is the N -th partial sum

SN = s1 + · · ·+ sN .

When working with series, very often the index 0 is allowed and one works
with sums

∞∑
n=0

sn.

We will not explore these ideas much further at this point. But before moving
on let us work out one example. We will work out the value of the infinite
series sum

1 +
1

2
+

1

22
+

1

23
+ · · ·

(If you think about it, this surely should add up to 2 ... we will verify this
intuition using mathematics.)

In the summation notation this is displayed as

∞∑
n=0

1

2n
.

Let us first work out the partial sum

SN = 1 +
1

2
+ · · ·+ 1

2N

The clever trick at this stage is to multiply this by 1/2:

1

2
SN = +

1

2
+ · · ·+ 1

2N
+

1

2N+1
.

Observe that this is very similar to SN itself: when we subtract nearly ev-
erything cancels out:

SN −
1

2
SN = 1− 1

2N+1
.

Thus, (
1− 1

2

)
SN = 1− 1

2N+1
.



54 Ambar N. Sengupta 11/6/2011

Now we have the expression for SN :

1 +
1

2
+ · · ·+ 1

2N
=

1− 1
2N+1

1− 1
2

. (6.11)

Letting N →∞ produces the infinite series sum

1 +
1

2
+ · · · = 1

1− 1
2

= 2. (6.12)

6.5 Lim with sups and infs

In this section we are going to push our grasp on sup’s and inf’s to the limit!
Consider a function f on a set S ⊂ R and a point p ∈ R∗. To avoid

unimportant technicalities let us assume that p is a limit point of S. We
know of then that

inf
x∈U∩S,x6=p

f(x) ≤ sup
x∈U∩S,x6=p

f(x).

Now consider another neighborhood V of p. Both U and V contain the
neighborhood

W = U ∩ V.
Hence

inf
x∈U∩S,x6=p

f(x) ≤ inf
x∈W∩S,x6=p

f(x)

sup
x∈W∩S,x6=p

f(x) ≤ sup
x∈V ∩S,x6=p

f(x),
(6.13)

because shrinking a set raises the inf and lowers the sup. As a consequence
we have

inf
x∈U∩S,x6=p

f(x) ≤ sup
x∈V ∩S,x6=p

f(x). (6.14)

Thus the sup over any neighborhood of p is ≥ the inf over all neighborhoods
of p.

Thus, there always exists a point that lies between the sups and infs of the
values f(x) for x in neighborhoods of p, excluding x = p. If there is a unique
such point then that point is limx→p f(x).

We can reformulate the relation (6.14) as follows: the sup of f over any
neigborhood of p is an upper bound for the set of all the inf values of f over
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all neighborhoods of p. Hence: the sup of f over any neighborhood V of p is
≥ the sup of the values infx∈U∩S,x6=p f(x) for all neighborhoods U of p:

sup
U

inf
x∈U∩S,x6=p

f(x) ≤ sup
x∈V ∩S,x6=p

f(x) (6.15)

where supU is the sup over all neighborhoods U of p. Since this holds for all
neighborhoods V of p we then conclude that

sup
U

inf
x∈U∩S,x6=p

f(x) ≤ inf
V

sup
x∈V ∩S,x6=p

f(x) (6.16)

where infV is the inf over all neighborhoods V of p.
Pondering (6.16) we observe that L = limx→p f(x) exists if and only if

the two extremes supU infx∈U∩S,x6=p f(x) and infV supx∈V ∩S,x6=p f(x) are equal,
and this common value must be L itself.

To summarize:

Proposition 6.5.1 Let f be a function defined on a set S ⊂ R, and p a limit
point of S. Then limx→p f(x) exists if and only if supU infx∈U∩S,x6=p f(x) and
infV supx∈V ∩S,x6=p f(x) are equal, and then

sup
U

inf
x∈U∩S,x6=p

f(x) = lim
x→p

f(x) = inf
V

sup
x∈V ∩S,x6=p

f(x). (6.17)
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Chapter 7

Limits: Properties

In this chapter we explore the concept of limit and get familiar with some
basic properties that make the computation of limits a routine process for
many ordinary functions.

7.1 Up and down with limits

Suppose f is a function on R and

lim
x→3

f(x) = 5.

Our intuition suggests that when x is near enough 3 (excluding x = 3 itself)
the value f(x) should be > 4. Let us see how we can deduce this from the
official definition of limit.

Since f(x) → 5 as x → 3, the number 5 is the unique value that lies
between the sups and infs of the values of f(x) for x (excluding x = 3) in
any neighborhood of 3. Thus, for instance, 4 does not lie between these sups
and infs. This means that there is some neighborhood, say U , of 3 such that
4 is not between the sup and the inf of f over U , excluding f(3):

4 /∈
[

inf
x∈U,x6=3

f(x) , sup
x∈U,x6=3

f(x)

]
.

Note that this interval does contain 5 because that is actually the limit. So
4 must lie below this interval:

4 < inf
x∈U,x6=3

f(x).
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This means that all the values of f on the neighborhood U of 3, excluding f(3)
itself, are > 4. This is exactly what we had conjectured based on common
sense intuition about limits.

If you look over the preceding discussion you see that what makes the
argument work is simply that 4 is a value that is < than the limit 5. Thus
what we have really proved is this:

Proposition 7.1.1 Suppose f is a function on some subset S ⊂ R, and

L = lim
x→p

f(x),

where p ∈ R∗. If b is any value below L, that is b < L then there is a
neighborhood U of p on which

f(x) > b for all x ∈ U ∩ S except possibly for x = p.

We have had to write x ∈ U ∩S, and not just x ∈ U , because f(x) might
not be defined for all x in U .

It is important not to get bogged down in the notation used: keep in
mind the essense of the idea. What we are saying is, in ordinary rough and
ready language, if f(x)→ L as x→ p then the values f(x) lie above b when
x is near p (but not p itself), for any given value b < L.

Of course, we can do the same for values above the limit:

Proposition 7.1.2 Suppose f is a function on some subset S ⊂ R, and

L = lim
x→p

f(x),

where p ∈ R∗. If u is any value > L then there is a neighborhood U of p on
which

f(x) < u for all x ∈ U ∩ S except possibly for x = p.

We can even put thee two observations together:

Proposition 7.1.3 Suppose f is a function on some subset S ⊂ R, and

L = lim
x→p

f(x),

where p ∈ R∗. If u is any value > L and b is any value < L then there is a
neighborhood U of p on which

b < f(x) < u for all x ∈ U ∩ S except possibly for x = p.
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7.2 Limits: the standard definition

Proposition 7.1.3 can be recast and slightly broadened into the following
characterization of the notion of limit:

Proposition 7.2.1 Let f be a function on S ⊂ R and p ∈ R∗. Suppose
L = limx→p f(x) exists . Then for any neighborhood W of L there is a
neighborhood U of p such that

f(x) ∈ W for all x ∈ U ∩ S, excluding x = p.

Proof. Suppose first that L is a real number, and not ∞ or −∞. Then in
the neighborhood W there is an open interval

(b, u),

centered at L, where b, u ∈ R and b < u. Then by Proposition 7.1.3 there is
a neighborhood U of p for which

b < f(x) < u for all x ∈ U ∩ S except possibly for x = p.

Thus, for all x ∈ U ∩S, except x = p, the value f(x) lies in the interval (b, u)
and hence in W .

Now consider the case L = ∞. A neighborhood of L then contains an
interval of the form

(b,∞],

for some real number b. By Proposition 7.1.1 there is a neighborhood U of p
for which

f(x) > b for all x ∈ U ∩ S except possibly for x = p.

Thus, for all x ∈ U ∩ S, except x = p, the value f(x) lies in the interval
(b,∞] and hence in W .

Lastly, consider the case L = −∞. A neighborhood of L contains an
interval of the form

[−∞, u).

By Proposition 7.1.2 there is a neighborhood U of p for which

f(x) < u for all x ∈ U ∩ S except possibly for x = p.

Thus, for all x ∈ U ∩ S, except x = p, the value f(x) lies in the interval

[−∞, u) and hence in W . QED
The result can also be run in reverse:



60 Ambar N. Sengupta 11/6/2011

Proposition 7.2.2 Let f be a function on S ⊂ R and let p ∈ R∗ be a limit
point of S. Suppose L ∈ R∗ has the property that for any neighborhood W of
L there is a neighborhood U of p such that

f(x) ∈ W for all x ∈ U ∩ S, excluding x = p. (7.1)

Then L = limx→p f(x).

Proof. Suppose first that L is a real number, and not ∞ or −∞. We will
show that L is the unique value that lies between the sups and infs of f(x)
for x in all neighborhoods of p (excluding the the value at x = p). Suppose
this were not true. Suppose U is a neighborhood of p such that

inf
x∈U∩S,x6=p

f(x) > L. (7.2)

Pick any real number u between these two values:

L < u < inf
x∈U∩S,x6=p

f(x). (7.3)

Consider then the neighborhood of L given by

W = (b, u),

where b < L and L is the center of the interval W . Then by the condition
(7.1) there is a neighborhood U of p for which

b < f(x) < u for all x ∈ U ∩ S except possibly for x = p.

But this is impossible since, by (7.3), u ≤ f(x) for all x ∈ U ∩ S with
x 6= p (the assumtion that p is not an isolated point or an exterior point
for S guarantees that U ∩ S actually contains a point other than p). This
contradiction shows that (7.2) is false, and so

inf
x∈U∩S,x6=p

f(x) ≤ L.

By a similar argument it also follows that

L ≤ sup
x∈U∩S,x6=p

f(x).

Thus L lies between all the sups and infs for f as required.
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But we still need to show that L is the unique such value. Consider any
value L′ 6= L. Suppose first L′ > L. Consider a neighborhood W of L that
does not contain L′. This means that L′ is > than all the values in W . By
(7.1) there is a neighborhood U of p such that f(x) ∈ W for all x ∈ U ∩ S
with x 6= p. Hence for all such values x we have f(x) < L′, and so L′ does nt
lie below supx∈U∩S,x6=p f(x). Thus L′ cannot be the limit of f(x) as x → p.
By just a similar argument no value < L could be the limit of f(x) as x→ p.

The cases L = ∞ and L = −∞ are settled by different but similar
arguments, just keeping in mind that the neighborhoods of ∞ and −∞ are
‘one sided’ rays. QED

Because of the preceding two results the definition of limit has the fol-
lowing equivalent formulation (the standard one):

Definition 7.2.1 Let f be a function on a set S ⊂ R, and p be any limit
point of S. A value L ∈ R∗ is said to be the limit of f(x) as x→ p if for any
neighborhood W of L there is a neighborhood U of p such that f(x) ∈ W for
all x ∈ U ∩ S with x 6= p.

7.3 Limits: working rules

It is an exhausting and largely pointless task to try to use the definition of
limit directly in computing actual limits such as

lim
x→3

x2 − 9

x− 3
.

It is far more efficient to develop some working rules, basic results, using
which more complicated limits can be reduced to simpler ones and then
these worked out directly.

There really are just two limits we have worked out directly from the
definition:

lim
x→p

K = K

lim
x→p

x = p
(7.4)

for all constants K ∈ R and points p ∈ R∗.
The first computationally useful result for limits is simply that the limit

of a sum is the sum of the limits:

lim
x→p

[f(x) + g(x)] = lim
x→p

f(x) + lim
x→p

g(x). (7.5)
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There are some qualifiers: we need to assume that the two limits on the right
exist and that the sum on the right is defined (it isn’t of the form (−∞) +∞
or ∞+ (−∞)). Here is a formal statement:

Proposition 7.3.1 Suppose f and g are functions on S ⊂ R, and suppose
the limits limx→p f(x) and limx→p g(x) exist, where p is some point in R∗.
Assume furthermore that

{lim
x→p

f(x) , lim
x→p

g(x)} 6= {∞, −∞}. (7.6)

Then limx→p[f(x) + g(x)] exists and

lim
x→p

[f(x) + g(x)] = lim
x→p

f(x) + lim
x→p

g(x). (7.7)

The point of the condition (7.6) is to ensure that the sum on the right in
(7.7) exists.

We will not prove this result here. Instead we march on to the next result,
focused on multiplication:

Proposition 7.3.2 Suppose f and g are functions on S ⊂ R, and p is some
point in R∗. Then the limit limx→p[f(x)g(x)] exists and

lim
x→p

[f(x)g(x)] =

(
lim
x→p

f(x)

)(
lim
x→p

g(x)

)
, (7.8)

provided the two limits on the right and their product exist and this product
is not of the form 0 · (±∞) or (±∞) · 0. More clearly, the condition is that
the limits limx→p f(x) and limx→p g(x) exist and

{lim
x→p

f(x) , lim
x→p

g(x)} 6= {0,∞}

and {lim
x→p

f(x) , lim
x→p

g(x)} 6= {0, −∞}.
(7.9)

It would have been easier to state this result had we never defined 0·∞ and
∞ · 0 as 0, and instead left such products as undefined. But the convention
0 · ∞ = 0 is very convenient for integration theory and so we hold on to it.
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Here is a quick application of the preceding rules about limits: we can
compute the limit of x2 + 3x+ 4 as x→ 1:

lim
x→1

(
x2 + 3x+ 4

)
= lim

x→1
x2 + lim

x→1
(3x+ 4) (if this exists)

=
(

lim
x→1

x
)(

lim
x→1

x
)

+
[(

lim
x→1

3
)(

lim
x→1

x
)

+ lim
x→1

4
]

(if this exists)

= 1 · 1 + [3 · 1 + 4] (and this does exist!)

= 8.

(7.10)

This is the kind of reasoning one should go through once but it is clearly so
routine that it is not worth mentioning all the steps every time. For

lim
x→2

(x3 + 5x− 2) = 8 + 10− 2,

not only is the result (the value of the limit) perfectly obvious from common
sense it is also perfectly obvious how to use the rules of limits to actually
prove that the limit is indeed the value stated above.

Going beyond multiplication we consider ratios. Note that a ration

a

b

is not meaningful if the denominator b is 0 or if a and b are both ±∞. It is
useful, for the purposes of the next result to define

a

∞
= 0 =

a

−∞
if a ∈ R. (7.11)

Proposition 7.3.3 Suppose f and g are functions on S ⊂ R, and p is some
point in R∗. Then the limit limx→p

f(x)
g(x)

exists and

lim
x→p

f(x)

g(x)
=

limx→p f(x)

limx→p g(x)
, (7.12)

provided the two limits on the right and their ratio exist (this means that the
ratio must not look like something/0 or ±∞/±∞).

As a simple illustration of what can go wrong in using this let us look at

lim
x→3

x2 − 9

x− 3
.
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If we just do the ratio of the limits we end up with 0/0, and this is just a
case where the preceding result cannot be applied. Thus we need to be less
lazy and observe that

x2 − 9

x− 3
=

(x− 3)(x+ 3)

x− 3
= x+ 3,

from which it is clear that

lim
x→3

x2 − 9

x− 3
= 6.

7.4 Limits by comparing

Sometimes we can find the limit of a function by comparing it with other
functions that are easier to understand.

The so called ‘squeeze theorem’ is a case of this. Suppose f , g, and h are
functions on a set S ⊂ R and p ∈ R∗ is such that

f(x) ≤ h(x) ≤ g(x) (7.13)

for all x in S that lie in some neighborhood U of p, excluding x = p. Assume
that limx→p f(x) and limx→p g(x) exist and are equal:

L = lim
x→p

f(x) = lim
x→p

g(x).

Then h(x), squeezed in between f(x) and g(x), is forced to also approach
the same limit L.

Here is a formal statement and proof:

Proposition 7.4.1 Suppose f , g, and h are functions on a set S ⊂ R, and
p ∈ R∗ is such that

f(x) ≤ h(x) ≤ g(x) (7.14)

for all x in S that lie in some neighborhood of p, excluding x = p. Assume
also that limx→p f(x) and limx→p g(x) exist and are equal:

L = lim
x→p

f(x) = lim
x→p

g(x).

Then limx→p h(x) exists and is equal to L.
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Proof. We will use the second formulation of the definition of limit, given in
Definition 7.2.1. (Since the limit limx→p f(x) is assumed to exist, the point
p is a limit point of S.)

Consider any neighborhood W of L. Note that W is an interval containing
L.

Since limx→p g(x) = L, Definition 7.2.1 implies that there is a neigborhood
U1 of p such that g(x) ∈ W for all x ∈ U1 ∩ S with x 6= p.

Similarly, there is also a neighborhood U2 of p such that g(x) ∈ W for all
x ∈ U2 ∩ S with x 6= p. Consider then

U = U1 ∩ U2,

which is also a neighborhood of p, contained inside both U1 an U2. If we take
any x ∈ U ∩ S, with x 6= p, then both g(x) and f(x) lie inside W , and so
anything between g(x)) and f(x) also lies in W . Hence

f(x) ∈ W

for all x ∈ U ∩ S, with x 6= p. This proves that

lim
x→p

f(x) = L. QED

Here is a consequence that is easier to apply sometimes:

Proposition 7.4.2 Suppose f is a function on a set S ⊂ R and p ∈ R∗ is
such that

lim
x→p
|f(x)| = 0.

Then
lim
x→p

f(x) = 0.

Note that we cannot draw any conclusion if we known that |f(x)| → 5, some
other nonzero value, because in that case f(x) could fluctuate up and down
between 5 and −5.
Proof. Any a ∈ R is either equal |a| or to −|a| (if a < 0), and we can
certainly write

−|a| ≤ a ≤ |a|.

Hence
−|f(x)| ≤ f(x) ≤ |f(x)|
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for all x in S. As x → p both |f(x)| → 0 and −|f(x)| → 0, and so, by the

‘squeeze’ theorem, f(x)→ 0 as well. QED
Here is a quick application:

lim
x→0

x3 sin

(
x+

1

x

)
= 0.

This follows by using the fact that | sin(·)| is ≤ 1, which shows that

0 ≤
∣∣∣∣x3 sin

(
x+

1

x

)∣∣∣∣ ≤ |x|3,
to which we can apply Proposition 7.4.2.

7.5 Limits of composite functions

Suppose f and g are functions. The composite f ◦ g is specified by

(f ◦ g)(x) = f
(
g(x)

)
,

and its domain is the set of all x for which this exists.
For example,

x 7→
√

1− x2

is the composite of the function x 7→ 1− x2 (for all x ∈ R) and the function
u 7→

√
u (for u ≥ 0); its domain is [−1, 1].

Turning to limits, it seems clear that

if g(x)→ q, as x→ p, and f(v)→ L, as v → q,

we should be able to conclude that

f(g(x))→ L as x→ p.

This is an extremely useful method and mostly we use it without even notic-
ing; for example, using the simple result

lim
w→1

w3 − 1

w − 1
= lim

w→1

(w − 1)(w2 + w + 1)

w − 1
+ lim

w→1
(w2 + w + 1) = 3,
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we obtain a limit that is at first less obvious:

lim
x→1

x1/3 − 1

x− 1
= lim

w→1

w − 1

w3 − 1
=

1

3
,

by using the ‘substitution’ x = w3.
This type of reasoning can encounter a rare breakdown. As an extreme

example, consider the functions F and G given by

F (v) =

{
1 for v 6= 0;

2 if v = 0,

and G(x) = 0 for all x. Then

G(x)→ 0 as x→ 0, and F (v)→ 1 as v → 0,

but F (G(x)) is stuck at the value 2 and so

F (G(x)) 6→ 1 as x→ 0.

What has gone wrong is that we have rigged the inner function G to keep
hitting (in fact it is stuck at) the forbidden’ point v = 0 which is excluded
from consideration when defining limv→0 F (v).

Treading around this obstacle we can formulate the composite limit very
delicately in the following result. Recall that a point p is exterior to a set B
if p has a neighborhood leying entirely outside B.

Proposition 7.5.1 Let f and g be functions, defined on subsets of R, and
suppose

limx→p g(x) = q and limv→q f(v) = L.

Let S be the domain of the composite f ◦ g. Assume that:

(i) p is a limit point of S;

(ii) p is exterior to the set {x : x 6= p, g(x) = q} ∩ S. (In other words, p
has a neighborhood U0 with the property that there is no point in U0,
other than p itself, that is both in the domain of f and were g takes the
value q.)

Then limx→p f
(
g(x)

)
exists and is equal to L:

lim
x→p

(f ◦ g)(x) = L.
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Condition (ii) ensures that g(x) avoids the ‘forbidden’ value q for all x that
are used in determining limx→p f(g(x)). Notice that (ii) is automatically
satisfied in the case q = ∞, for g, being a real valued function, never takes
the value ∞. Another very convenient special case is when g(x) simply does
not take the value q, except possibly when x = p.
Proof. Let us begin by recalling what it means for f(v) → L as v → q. Let
W be any neighborhood of L. Then there is a neighborhood V of q such that

f(v) ∈ W for all v ∈ V , with v 6= q, that are in the domain of f . (7.15)

Next, since g(x)→ q as x→ p, there is a neighborhood U of p such that

g(x) ∈ V for all x ∈ U , with x 6= p, that are in the domain of g. (7.16)

We will focus on the neighborhood U of p shrunk down by intersecting
with U0:

U1 = U ∩ U0,

which is still a neighborhood of p, of course.
Now consider any point x in U1, with x 6= p, for which f(g(x)) is defined

and g(x) 6= q; we are given that such an x exists. By (7.16) we have g(x) ∈ V ,
and then by (7.15), we have f

(
g(x)

)
∈ W .

Thus, starting with any neigborhood W of L we have produced a neigh-
borhood U1 of p such that (f ◦ g)(x) ∈ W for all x ∈ U1 with x 6= p. QED



Chapter 8

Trigonometric Functions

We consider the trigonometric functions sin and cos. Though we don’t really
discuss completely precise mathematical definitions for these functions, we
extract enough information about them from trigonometry to be able to do
calculus with these functions. Eventually one can use the results of calculus
to construct definitions for sin and cos that don’t use geometry.

8.1 Measuring angles

What exactly is an angle? The most basic idea of an angle is that it is
specified by two rays going out of a given vertex point.

C

Figure 8.1: Angle as a pair of rays

This leaves open a small bit of ambiguity, as to whether we are thinking
of the ‘smaller’ angle or the remaining ‘larger’ angle.

One way to be more specific is to draw a circle, with center C at the
vertex, and think of the angle as an arc of the circle marked off by the two
rays. To be more precise we could just think of a circle of radius 1, with

69
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C
Q

P

θ

The area of the shaded sector gives a

measure of the angle ∠PCQ (taking the

radius CP to be the unit of length).

Figure 8.2: Measuring angle using sectorial areas

center C at the vertex of the two rays, and then think of the angle as a
sector marked off in the circle by the two rays.

Then the radian measure of the angle ∠PCQ is taken to be twice the area
of the sector PCQ.

Why twice? This is just to be consistent with historical practice and
convention. Take, as an extreme example, the full angle, so that the sector
PCQ is, in fact, the entire circular disk. The area of this disk is what is
denoted

π

and so the full circular angle has radian measure 2π.

From this we can quickly see that 900, which specifies a quarter circle,
has radian measure

1

4
(2π) =

π

4
.

This discussion has one element of haziness: what do we mean by the
area of a curved region? For this please turn back to the Introduction.

8.2 Geometric specification of sin, cos and tan

We will describe the geometric meaning of the measure of an angle and also
that of sin θ and cos θ.
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Regardless of how an angle might be measured, the geometric meanings
of sin, cos and tan of an acute angle are illustrated in the classical diagram
shown in Figure 8.3. If the angle is specified by a pair of rays R1 and
R2, initiating from a vertex C, we draw a circle, with center C, and take
the radius to be the unit of length. The ‘semichord’ from R2 to R1 is the
segment, perpendicular to R1, that runs from the point Q where R2 cuts the
circle to a point on R1. The length of the ‘semi-chord’ is the sin of the angle.
The cos of the angle is the distance from the vertex C to the semi-chord.
Then tan of the angle is the length of the segment tangent to the circle at Q
to a point on R1.

θ

cos θ

sin θ
tan θ

1

Figure 8.3: Classical definitions of sin, cos, and tan

The more cluttered Figure 8.4 provides more concrete formulas and also
relates visually to the measurement of the angle θ in terms of the area of the
sectorial region it cuts out of the circle.

The line through P perpendicular to CQ intersects the line CQ at a point
B. Let

x = CB

y = QB.
(8.1)

Here we take x to be negative if B is on the opposite side of C from P . We
take y to be negative if θ > π.
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x

y

sin θ

cos θC B Q

P

θ

sin θ=BP
CP

cos θ=CB
CP

tan θ=BP
CB

area sector CPQ = 1
2
(CP )2θ

Figure 8.4: Measuring θ and sin θ, cos θ, and tan θ

The trigonometric functions are specified by:

sin θ =
QB

CQ
;

cos θ =
CB

CQ
;

tan θ =
QB

CB
,

(8.2)

where we leave tan θ undefined if θ = π/2 because in this case the denomi-
nator CB becomes 0.

From (8.2) it is also clear that

tan θ =
sin θ

cos θ
(8.3)

as long as θ 6= π/2.
Geometrically, to be consistent with the preceding discussion, it is sensible

to define

sin 0 = 0;

cos 0 = 1;

tan 0 = 0.

(8.4)



DRAFT Calculus Notes 11/17/2011 73

Observe also that

sin π/2 = 1;

cos π/2 = 0,
(8.5)

and

sin π = 0;

cosπ = −1;

tanπ = 0.

(8.6)

If the angle θ is increased to θ+2π then geometrically the point Q remains
where it is. Thus we can define the trigonometric functions for values outside
[0, 2π) by requiring that

sin(a+ 2π) = sin a

cos(a+ 2π) = cos a;

tan(a+ 2π) = tan a,

(8.7)

again as long as tan(a+ 2π), and hence tan a, is defined.

The above property of the trigonometric functions are summarized in
words by saying that these functions are periodic and each has period 2π
(the values repeat every time a is changed to a + 2π, and 2π is the least
positive value with this property).

When a ∈ (0, π), sin a is postive, and when a ∈ (π, 2π) the value sin a is
negative:

sin a

{
> 0 if a ∈ (0, π);

< 0 if a ∈ (π, 2π).
(8.8)

For cos it is:

cos a

{
> 0 if a ∈ (−π/2, π/2);

< 0 if a ∈ (π/2, 3π/2).
(8.9)
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8.3 Reciprocals of sin, cos, and tan

The reciprocals of sin, cos and tan also have names:

csc θ =
1

sin θ

sec θ =
1

cos θ

cot θ =
1

tan θ

(8.10)

whenever these reciprocals are meaningful (for instance, csc 0 and sec(π/2)
undefined).

8.4 Identities

If one angle of a right-angled triangle is θ then the other is π/2 − θ. This
leads to the following identities:

sin
(π

2
− θ
)

= cos θ

cos
(π

2
− θ
)

= sin θ

tan
(π

2
− θ
)

= cot θ.

(8.11)

When an angle is replaced by its negative, it changes the sign of sin and
tan but not of cos:

sin(−a) = − sin a;

cos(−a) = cos a;

tan(−a) = − tan a,

(8.12)

with the last holding if the tan values exist.
Pythagoras’ theorem implies the enormously useful identity

sin2 a+ cos2 a = 1, (8.13)

for all a ∈ R. Using this we can work out the value of sin, at least up to sign,
from the value of cos:

sin a = ±
√

1− cos2 a. (8.14)
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The only way to decide whether it is + or whether it is − is to consider the
value of a: if a ∈ [0, π], or differs from such a value by an integer multiple of
2π, then sin a is ≥ 0.

Similar considerations hold for

cos a = ±
√

1− sin2 a. (8.15)

There are several relations among these reciprocal trigonometric functions
that can be deduced from relations between sin, cos, and tan. For instance,
dividing

sin2 θ + cos2 θ = 1

by cos2 θ produces:
sin2 θ

cos2 θ
+ 1 =

1

cos2 θ
,

which can be rewritten as

1 + tan2 θ = sec2 θ (8.16)

for all θ for which tan θ is defined. (For θ = ±π/2 one could define tan2 θ as
well as sec2 θboth to be∞, and similarly for all the other trouble spots ±π/2
plus integer multiples of 2π, and this would make (8.16) valid for all θ ∈ R.)

Very clever geometric arguments can be used to prove the trigonometric
identities:

sin(a+ b) = sin a cos b+ sin b cos a;

cos(a+ b) = cos a cos b− sin a sin b;

tan(a+ b) =
tan a+ tan b

1− tan a tan b
,

(8.17)

where for the last identity we require, of course, that the tan values are
actually defined.

There are some consequences of these addition formulas that are also
useful. The simplest are obtained by taking b = a in the preceding formulas.

Special cases of these are also very useful:

sin(2a) = 2 sin a cos b;

cos(2a) = cos2 a− sin2 a = 2 cos2 a− 1 = 1− 2 sin2 a;

tan(2a) =
2 tan a

1− tan2 a
,

(8.18)
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as long as the tan values are defined.
Now consider

sinx− sin y.

Suppose we choose a and b such that

x = a+ b

y = a− b
(8.19)

Then

sinx− sin y = sin(a+ b)− sin(a− b)
= (sin a cos b+ sin b cos a)− (sin a cos b− sin b cos a)

= 2 sin a cos b.

(8.20)

Now we need to substitute in the values of a and b in terms of x and y by
solving (8.19). Adding the equations (8.19) gives

x+ y = 2a,

and subtracting gives

x− y = (a+ b)− (a− b) = 2b.

Thus

a =
1

2
(x+ y)

b =
1

2
(x+ y).

(8.21)

Putting these into (8.20) produces

sinx− sin y = 2 sin
x− y

2
cos

x+ y

2
. (8.22)

Following the same line of reasoning for cos instead of sin gives us

cosx− cos y = −2 sin
x− y

2
sin

x+ y

2
. (8.23)

Before moving on, let us note that taking −b in place of b in

sin(a− b) = sin a cos b− sin b cos a;

cos(a− b) = cos a cos b+ sin a sin b;

tan(a− b) =
tan a− tan b

1 + tan a tan b
,

(8.24)
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8.5 Inequalities

The identity
sin2 a+ cos2 a = 1

implies that neither sin a nor cos a can be bigger than 1 in magnitude:

| sin a| ≤ 1;

| cos a| ≤ 1.
(8.25)

For example,

|5| = 5; |0| = 0; and | − 4| = 4.

Note, however, that both sin a and cos a do reach the values 1 and −1
repeatedly no matter how far away from 0 the value of a is:

sin
(π

2
+ 2πn

)
= 1;

sin
(
−π

2
+ 2πn

)
= −1,

(8.26)

for all integers n ∈ Z. The same holds for cos:

cos(2πn) = 1;

cos(π + 2πn) = −1,
(8.27)

for all integers n ∈ Z.
Some geometric arguments with areas shows that

cosx ≤ sinx
x
≤ 1 for all x ∈ (0, π/2]. (8.28)

Since sin(−x) is − sinx, we have

sin(−x)

−x
=

sinx

x
.

Moreover, we also know that

cos(−x) = cos x.

Thus we can go over to the negative side as well:

cosx ≤ sinx
x
≤ 1 for all x ∈ (−π/2, π/2) with x 6= 0. (8.29)
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8.6 Limits for sin and cos

The functions sin and cos are continuous functions in the sense that their
limits coincide with their values:

lim
x→p

sinx = sin p

lim
x→p

cosx = cos p,
(8.30)

for all p ∈ R. (We will return to the notion of continuous functions later.)
In particular,

lim
x→0

sinx = sin 0 = 0

and
lim
x→0

cosx = cos 0 = 1.

We can explore the behavior of sinx for x near 0 more carefully. Recall
the bounds for (sinx)/x near 0:

cosx ≤ sinx
x
≤ 1 for all x ∈ (−π/2, π/2) with x 6= 0. (8.31)

We know that as x → 0 we have cos x → 1. So (sinx)/x being between 1
and cos x also goes to the limit 1:

lim
x→0

sinx

x
= 1. (8.32)

There are many useful and not-so-useful consequences of this limit. For
instance,

lim
x→0

1− cosx

x2
= lim

x→0

(1− cosx)(1 + cos x)

x2(1 + cos x)

= lim
x→0

1− cos2 x

x2(1 + cos x)

= lim
x→0

sin2 x

x2(1 + cos x)

= lim
x→0

(
sinx

x

)2
1

1 + cos x

= 12 · 1

1 + 1

=
1

2
.

(8.33)
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In summary

lim
x→0

1− cosx

x2
=

1

2
. (8.34)

Another very simply consequence of (8.32) is

lim
x→0

sinKx

x
= K, for all K ∈ R. (8.35)

This can be seen by observing that we can write

sinKx

x
= K

sinKx

Kx
= K

sin y

y
,

where y = Kx. Clearly, y approaches 0 when x→ 0, and so we have

lim
x→0

sinKx

x
= lim

y→0
K

sin y

y
= K · 1 = K.

(To be honest, some reasoning is needed here to explain why one can pass
from x→ 0 to y → 0.)

8.7 Limits with sin(1/x)

The functions sin(1/x) and cos(1/x) are badly behaved functions near the
value x = 0.

When x = 1/(π/2 + 2πn), for any integer n, we have sin(1/x) = 1:

sin

(
1

1/(π/2 + 2πn)

)
= sin (π/2 + 2πn) = 1 for all n ∈ Z.

On the other hand if x = 3π/2 + 2πn then the value of sin is −1:

sin

(
1

1/(3π/2 + 2πn)

)
= sin (3π/2 + 2πn) = −1 for all n ∈ Z.

Now any neighborhood of 0 contains the values 1/(π/2+2πn) and 1/(3π/2+
2πn) for large enough integers n. Thus, in every neighborhood of 0 there are
values of x for which sinx is 1 and there are values of x for which the value
of sin x is −1.

Thus

inf
x∈U,x 6=0

sin(1/x) = −1, and sup
x∈U,x 6=0

sin(1/x) = 1 (8.36)
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for every neighborhood U of 0. Thus there cannot be a unique value lying
between the sups and infs. Hence:

limx→0 sin 1
x

does not exist. (8.37)

The problem here is that sin 1/x fluctuates too much near x = 0. These
fluctuations can be dampened out by multiplying by x; consider

f(x) = x sin(1/x) for x 6= 0.

Since sin a is at most 1 in magnitude we have

−|x| ≤ f(x) ≤ |x| for all x 6= 0.

If we let x→ 0 then clearly |x| → 0, and so the squeeze theorem implies that
limx→0 f(x) exists and is 0:

lim
x→0

x sin
1

x
= 0. (8.38)

Notice that the ‘product rule’ does not work here:

lim
x→0

x sin
1

x
=
(

lim
x→0

x
)(

lim
x→0

sin
1

x

)
FAILS

because on the right the limit limx→0 sin 1
x

does not exist.

8.8 Graphs of trigonometric functions

The graphs of sin and cos are waves, with sin passing through (0, 0) and cos
through (1, 0).

The graph for sin is

x

y

2ππ−π
π/2

y = sinx

Figure 8.5: Graph of sin

The graph for tan blows up at ±π/2, because

lim
x→π/2+

tanx = −∞, and lim
x→π/2−

tanx =∞,

and similarly at −π/2.
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x

y

2π

π−π
π/2

y = cosx

Figure 8.6: Graph of cos

x

y

2ππ−π
π/2−π/2

y = tanx

Figure 8.7: Graph of tan

8.9 Postcript on trigonometric functions

Once one has built up the full apparatus of calculus, with both derivatives
and integrals, it is possible to reconstruct the functions sin, cos and tan
directly in terms of calculus, without reference to any diagrams or traditional
trigonometry. For example, here are the formulas for sin and cos that can be
used to define them without using pictures:

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·

cosx = 1− 1

2!
x2 +

1

4!
x4 − · · ·

(8.39)

What the ‘infinite sums’ on the right mean exactly will be clear only after
we have studied limits and sequences. It is, at this stage, impossible to see
where the identities/definitions (8.39) come from.
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Exercises on Limits

Write out the limits or explain as needed:

1. limx→1 5

2. limx→1(x2 + 4x− 5
x
)

3. limx→1
x2−9
x−3

4. limx→1
x3−1
x2−1

5. limx→1
x4−1
x2−1

6. limx→∞
1
x2

7. limx→∞
4x3−3x+2
x2−x+1

8. limx→∞
5x6−7x+2
3x6+x+2

9. limx→∞
4x3+sinx
2x3+

√
x

10. limx→∞
7x5+x+cos(x3)

2x5−5x2+1

11. limx→∞
[√
x+ 1−

√
x
]

12. limx→∞
[√

3x2 + 1−
√
x2 + 1

]
13. limx→∞

[√
4x4 + 2−

√
x4 + 1

]
14. limx→∞

√
x+1√
x

15. limx→∞ x
[√
x2 + 2−

√
x2 + 1

]
16. limx→∞

√
x+ 2

[√
x+ 1−

√
x
]

17. limθ→0
sin(θ2)
θ2

18. limθ→0
sin2(θ)
θ2

19. limθ→π/6
sin(θ−π/6)
θ−π/6
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20. limx→0 x
21Q(x)

21. limx→0 x(1− x)1Q(x)

22. limx→1 x(1− x)1Q(x)

23. Explain why limx→3 x(x− 1)1Q(x) does not exist.

24. Explain why limx→∞ cosx does not exist.

25. Explain why limx→∞ x sinx does not exist.

26. Explain why limx→∞
sinx
x

= 0.

27. Explain why limx→∞
sinx√
x

= 0.
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Chapter 9

Continuity

Continuous functions are functions that respect topological structure. They
are also the easiest to work with in and therefore most suitable in applica-
tions.

9.1 Continuity at a point

A function f on a set S ⊂ R is said to be continuous at a point p ∈ S if
f(x) approaches its actual value f(p) when x approaches p:

if limx→p f(x) = f(p) we say f is continuous at p.

In case p is an isolated point of S we cannot work with limx→p f(x), but
surely there is no reason to view f as being not continuous at such a point.
So we also say that f is continuous at p if p is an isolated point of S.

Here is a cleaner definition of continuity at p:

Definition 9.1.1 A function f defined on a set S ⊂ R is said to be con-
tinuous at a point p ∈ S if for every neighborhood W of f(p) there is a
neighborhood U of p such that

f(x) ∈ W for all x ∈ U .

9.2 Discontinuities

Sometimes a function is discontinuous (that is, not continuous) at a point p
because the value f(p) is, for whatever reason, not equal to limx→p f(x) even

85
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though this limit exists. For example, for the function g given by

g(x) =

{
x2−9
x−3

if x 6= 3;

4 if x = 3.
(9.1)

we have the limit

lim
x→3

g(x) = lim
x→3

(x+ 3) = 6,

which is not equal to the value g(3). This type of discontiuity is removable,
simple by changing the value of g at 3.

On the other hand there are more serious discontinuties. For example,

lim
x→0+

|x|
x

= lim
x→0

x

x
= 1,

whereas, approaching 0 from the left,

lim
x→0−

|x|
x

= lim
x→0

−x
x

= −1.

There is a jump from left to right, and there is no way to remove this dis-
continuity.

The function

f(x) =

{
sin(1/x) for all x 6= 0;

1 if x = 0

has a more severe discontinuity at 0 because sin(1/x) doesn’t even have a
limit x→ 0.

9.3 Continuous functions

A function f is said to be continuous if f is continuous at every point where
it is defined.

All polynomial functions, such as

5x3 − 3x4 + 7x2 − 3x+ 4

are continuous.
Here is a simple observation that is used often without mention:
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Proposition 9.3.1 If f is continuous at every point of a set S and if T is
a nonempty subset of S then f is also continuous at every point of T .

You can check this easily by consulting the definition of what it means
to be continuous at a point.

If f is a function and T is a set contained inside the domain of definition
of f then f |T , called the restriction of f to T , denotes the function whose
domain is T and whose value at any x ∈ T is f(x).

For example, consider the function 1Q on R whose value is 1 on rationals
and 0 on irrationals. The restriction

1Q|Q

is the function defined on Q whose value at every point in Q is 1: in other
words 1Q|Q is just the constant function 1 on the set Q.

The statement ‘f is continuous on a set T ’ can have two different mean-
ings:

(i) f is continuous at every point of T ;

(ii) the restriction f |T is continuous.

For example 1Q|Q is certainly continuous but 1Q is not continuous at any
point of Q (or at any point at all).

9.4 Two examples using Q
The function

1Q

has the property that limx→p 1Q(x) does not exist for any p. Hence this
function is discontinuous everywhere on R.

We can damp out the discontiuity at 0 as follows:

f(x) = x1Q(x) for all x ∈ R.

has the property that
lim
x→0

f(x) = 0 = f(0),

but limx→p f(x) does not exist for any p 6= 0. Hence f is continuous at exactly
one point, that being 0.
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To produce a function continuous at only the points 1 and 5 we take 1Q(x)
and multiply it with a function that is 0 at exactly 1 and 5; for example,

x 7→ (x− 1)(x− 5)1Q(x)

is continuous at 1 and at 5 but nowhere else.
Can you manufacture a function that is continuous at exactly a given

set of points and nowhere else? Is there a function that continuous at every
point of (0, 1) but at no other point?

9.5 Composites of continuous functions

Proposition 9.5.1 Suppose f and g are functions defined on subsets of R,
and suppose f ◦ g is defined on a neighborhood of some p ∈ R. If g is
continuous at p and f is continuous at g(p) then f ◦ g is continuous at p.

Proof. Let W be a neighborhood of L = f(q), where q = g(p). Then, by
continuity of f at q, there is a neighborhood V of q such that f(v) ∈ W
for all v ∈ V in the domain of f . Next, by continuity of g at p, there is a
neighborhood U of p such that g(x) ∈ V for all x ∈ U in the domain of g.
Hence if x ∈ U is in the domain of f ◦ g then f

(
g(x)

)
∈ W . This proves that

f ◦ g is continuous at p. QED

9.6 Continuity on R∗

In calculus we work with functions defined on subsets of R and having values
in R. However, occasionally, it is useful to allow infinite values as well. No
great additional work is needed for this; the definition remains exactly as
before:

a function F : S → R∗ is continuous at p ∈ S if either p is an isolated
point of S or if limx→p F (x) = F (p).

An equivalent alternative form is again just as before: F is continuous
at p if for any neighborhood W of F (p) there is a neighborhood U of p such
that F (x) ∈ W for all x ∈ U .

If f : (a, b)→ R is continuous and limx→a f(x) exists then we can extend
f to a continuous function F : [a, b)→ R∗ by setting

F (a) = lim
x→a

f(x).
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Of course, the same applies for the other endpoint b.



90 Ambar N. Sengupta 11/6/2011



Chapter 10

The Intermediate Value
Theorem

Consider the function f given by

f(x) = x3 − x2 − 2x+ 1 for all x ∈ R.

Figure 10.1 is a sketch of its graph for x ∈ [−1.5, 2]. We can check easily

x

y

y = x3 − x2 − 2x+ 1

Figure 10.1: Graph of x3 − x2 − 2x+ 1

that
f(−1) = 1 and f(1) = −1.

Intuitively it is clear, from the continuous nature of the graph of y = f(x),
that there must be a point p ∈ [−1, 1] where f(p) is 0. The intermediate
value theorem, which we study in this chapter, guarantees the existence of
such a point; thus, from this theorem it follows that there is a solution of the
equation

x3 − x2 − 2x+ 1 = 0

91
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on the interval −1, 1].
Its essence remains valid in settings far beyond the real line, but even this

first glimpse of the idea, on R, is of great use.

10.1 Inequalities from limits

Suppose we know that a function f has the limit

lim
x→5

f(x) = 9.

Then f(x) is close to 9, say within a distance of 1, if x is close enough to 5
(but not 5); thus there must be a neighborhood U of 5 for which

8 < f(x) and f(x) < 10,

for all x ∈ U with x 6= 5. We summarize this idea in:

Proposition 10.1.1 Let f be a function on a set S, and p ∈ R∗ a point
for which limx→p f(x) exists. If K is less than this limit then there is a
neighborhood U on whichK < f(x) for all x ∈ U , x 6= p; thus,

if K < limx→p f(x) then K < f(x) for all x ∈ U , x 6= p (10.1)

for some neighborhood U of p. Similarly,

if M > limx→p f(x) then M > f(x) for all x ∈ U , x 6= p (10.2)

for some neighborhood U of p.

The proof proceeds a little bit differently from the intuition if we use our
sup-inf definition of limit:
Proof. Let

L = lim
x→p

f(x).

This means that L is the unique value satisfying

inf
x∈U,x6=p

f(x) ≤ L ≤ sup
x∈U,x 6=p

f(x)

for all neighborhoods U of p. So if K < L then K does not lie between all
such infs and sups; thus, there is some neighborhood U of p such that K
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does not lie between infx∈U,x 6=p f(x) and supx∈U,x6=p f(x). Since K < L, the
only possibility left is

K < inf
x∈U,x 6=p

f(x).

This proves (10.1).
The result (10.2) for M > limx→p f(x) follows by a similar argument.

QED

10.2 Intermediate Value Theorem

The completeness property of the real line has one big consequence for con-
tinuous functions: if f is continuous on the interval [a, b] then f(x) runs
through all the values between f(a) and f(b) as x runs over [a, b]:

Theorem 10.2.1 Let f be a continuous function on [a, b], where a, b ∈ R
with a < b. Let t be any real number between f(a) and f(b):

f(a) ≤ t ≤ f(b) or f(b) ≤ t ≤ f(a).

Then there is a point s ∈ [a, b] for which f(s) = t.

Proof. If t happens to be equal to f(a) then we are done; just take s = a.
Similarly if t = f(b).

Suppose then that t is neither f(a) nor f(b), and so lies strictly between
them. If f(a) < f(b) this means that f(a) < t < f(b), whereas if f(a) > f(b)
then f(b) < t < f(a).

Suppose
f(a) < t < f(b).

Let S be the set of all x ∈ [a, b] for which f(x) < t:

S = {x ∈ [a, b] : f(x) < t}.

For instance, a ∈ S. Moreover, b is an upper bound for S, because S is inside
[a, b]. In fact a < s < b, because of Proposition 10.1.1.

Then by the completeness property for R there is a least upper bound
s = supS, and this, of course, also lies in [a, b]. We claim that f(s) equals t.
Consider any neighborhood U of s of the form

U = (s− δ, s+ δ),
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where δ is any positive real number. Since s is an upper bound of S, any
point p of S strictly to the right of s (that is, p > s) is not in S, and so

f(p) > t,

for such p ∈ [a, b]. Then
sup

x∈U,x6=s
f(x) > t

Since s is the least upper bound of S, any point p ∈ U for which p < s is
not an upper bound of S and so there is some q ∈ S with q > p. Of course
q ≤ s, since s is an upper bound of S. Hence q, lying between p and s, is in
the neighborhood U . Since q ∈ S we have

f(q) < t.

This shows that the inf of f over U , even excluding the point s, is < t:

inf
x∈U,x6=s

f(x) < t.

Thus t satisfies:
inf

x∈U,x6=p
f(x) < t < sup

x∈U,x 6=s
f(x)

for every neighborhood U of p. Since f is given to be continuous at s we
know that

f(s) = lim
x→s

f(x).

Hence t must be f(s). QED

10.3 Intermediate Value Theorem: a second

formulation

Here is another formulation of the intermediate value theorem:

Theorem 10.3.1 If f is continuous on an interval J then the image

f(J)
def
= {f(x) : x ∈ J}

is also an interval.
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Proof. To prove that f(J) is an interval we need only to show that all the
numbers between any two distinct values y1, y2 ∈ f(J) also lie in f(J). Thus
consider a point t satisfying

y1 < t < y2.

Since y1 ∈ f(J) we have
y1 = f(a),

for some a ∈ J , and since y2 ∈ J then

y2 = f(b)

for some b ∈ J . Thus, f is continuous on [a, b] and t lies between f(a) and
f(b). Then by Theorem 10.2.1, there is a point s ∈ [a, b] for which

f(s) = t.

Since s ∈ [a, b] and a and b are points of the interval J it follows that s also
lies in J . Thus any point t between y1 and y2 is of the form t = f(s), with

s ∈ J , which just means that t ∈ J . Thus, J is indeed an interval. QED

10.4 Intermediate Value Theorem: an appli-

cation

The number
73/4

is the positive real number whose 4-th power is (10)3:(
73/4

)4
= 73.

But how do we know that such a real number exists? We can obtain existence
by using the intermediate value theorem.

Consider the function

q(x) = x4 for all x ∈ R.

This is clearly continuous, and from

q(0) = 0 and q(7) = 74
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we see that the number 73 lies between these extremes:

q(0) < 73 < q(7).

Hence, by the intermediate value theorem, there is a real number s ∈ (0, 7)
for which

s4 = 73.

Could there be another positive real number s∗ whose 4-th power is also 73?
The answer is no, because if s > s∗ > 0 then s4

∗ is < s4 = 73, whereas if
s < s∗ then s4

∗ > s4 = 73. Thus there is a unique positive real number whose
4-th power is 73. This number is denoted

73/4.

In this was one can see that
xy

exists for all positive real x and all rational y.
Returning to 73/4 we can extract some more information: we saw that s

actually lies between 0 and 7. But we can sharpen this much further. Since
73 = 343 we have

q(4) = 44 = 256 < 73 < q(5) = 54 = 625.

Hence 73/4 actually lies between 4 and 5. With more work we can narrow
down the location of 73/4 systematically.

It is clear that not much is special about the numbers 7 and 3/4 in this
discussion. The intermediate value theorem (and, more fundamentally, the
completeness of R) shows that for any real number x ≥ 0 and any rational
number r = p/q, with p, q ∈ Z and q 6= 0, there is a unique non-negative real
number xr which satisfies

(xp/q)q = xp.

10.5 Locating roots

Consider the equation
x7 − 3x+ 1 = 0.

There is no systematic way to work out exact solutions of equations such as
this. However, there are many ways of determining information about the
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solutions as well as finding very good approximations to them. Here let us
see how the intermediate value theorem shows that there are solutions of the
equation and helps localize them somewhat.

Consider the function

f(x) = x7 − 3x− 1 for all x ∈ R.

This is clearly continuous. Let us check a few values of f :

f(−2) = −123, f(−1) = 1, f(0) = −1, f(1) = −3, f(2) = 121.

Since f is continuous and 0 lies between f(−2) and f(−1):

f(−2) = −123 < 0 < 1 = f(−1),

it follows by the intermediate value theorem that

there is a point p ∈ (−2,−1) where f(p) = 0.

This means that the equation

x7 − 3x+ 1 = 0 (10.3)

has a solution on the interval (−2,−1).
By the same reasoning we see that the equation (10.3) also has a solution

in (−1, 0) and and a solution lying in (1, 2).
One way of pinning down the location of the solutions of (10.3) would

be to divide, say the interval (1, 2) into ten pieces, each of width .1, and
checking the values of f at the points

f(1), f(1.1), f(1.2), . . . , f(1.9), f(2),

to see where f changes from negative to positive. We can calculate

f(1.1) ' −0.35 f(1.2) ' 0.98

and this tells us there is a root (which means the same as ‘solution’) of the
equation (10.3) in the interval (1.1, 1.2). Next, repeating the same strategy
by dividing (1.1, 1.2) into ten pieces and calculating the values

f(1.11), f(1.12), f(1.13), f(1.14), f(1.15), . . . , f(1.19), f(1.2),
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we observe that

f(1.13) ' −0.037, and f(1.14) ' 0.082.

Thus, there is a root in the interval

(1.13, 1.14).

This is a slow and inefficient process, but a first process nonetheless to sys-
tematically pin down a root of an equation. Later, with the use of calculus,
we can study much faster methods for locating roots.



Chapter 11

Inverse Functions

In this chapter we show by using the intermediate value theorem that equa-
tions of the form

y = f(x)

can be ‘solved’ for a good class of continuous functions f . The solution is
then displayed as

x = f−1(y),

and f−1 is the called the inverse of the function f .

11.1 Inverse trigonometric functions

The graph of y = sinx oscillates between −1 and 1.

x

y

.5
1

−1

2ππ−π
π/6 5π/6

y = sinx

Figure 11.1: Graph of sin.

If we try to solve an equation such as

sinφ = .5

99
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there are infinitely many values for φ:

π

6
,

5π

6
,
π

6
+ 2π,

5π

6
+ 2π,

π

6
− 2π,

5π

6
− 2π,

π

6
+ 4π,

5π

6
+ 4π, . . .

Each of these could be thought of as an ‘inverse sin’ for the value .5 in
the sense that the sin of each of these is .5. However, to avoid ambiguity we
can focus on just the value π/6: what makes it unique is that it is the only
value between −π/2 and π/2 whose sin is .5.

x

y

.5
1

−1

π/6 π/2

−π/2
y = sinx for x ∈ [−π/2, π/2]

Figure 11.2: Graph of sin over [−π/2, π/2].

We define arcsin(.5) to be π/6:

arcsin(.5)
def
= sin−1(.5)

def
= π/6.

More generally

sin−1(w) is the unique value in [−π/2, π/2] whose sin is w, (11.1)

that is,
sin
(
sin−1w

)
= w and sin−1w ∈ [−π/2, π/2]. (11.2)

Thus,

y = sin−1 x means that y ∈ [−π/2, π/2] and sin y is x. (11.3)

Since the values sin always lie between −1 and 1, there is no value whose
sin is 2; thus

sin−1 x is not defined, as a real number, if x is not in [−1, 1].

On the positive side,
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Proposition 11.1.1 If A ∈ [−1, 1] then there exists a unique B ∈ [−π/2, π/2]
for which sinB = A.

Proof. The function sin is continuous on [−π/2, π/2] and the end point values
are

sin(−π/1) = −1, and sin(π/2) = 1.

Therefore, by the intermediate value theorem, for any A ∈ [−1, 1] there is a
B ∈ [−π/2, π/2] for which

A = sinB.

To see that B is unique simply observe that the function y = sinx is strictly
increasing on [−π/2, π/2] and two different values of x could not have the

same value for y = sinx. QED
Thus,

sin−1 x is defined for all x ∈ [−1, ]1].

We can run through the same arguments, with minor changes, for the
function cos. We have to be careful to observe that y = cosx is not strictly
increasing on [−π/2, π/2]. For example both π/3 and −π/3 have cos equal
to .5:

cos(−π/3) = cos(π/3) = .5.

x

y

.5
1

−1

2ππ−π
π/3−π/3

y = cosx

Figure 11.3: Graph of cos.

One possibility is to work with the interval [−π, 0] on which cos is strictly
increasing, but there is a bias against using negative values when positives
would work. So, instead we use the interval

[0, π]
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on which cos is strictly decreasing.
Running through the argument we conclude that

for every A ∈ [−1, 1] there is a unique B ∈ [0, π] for which cosB = A.

The unique value y in [0, π] for which cos y is x is denoted cos−1 x:

cos−1(x) is the unique value in [0, π] whose cos is x, (11.4)

or, equivalently,

y = cos−1 x means that y ∈ [0, π] and cos y is x. (11.5)

We can run the same reasoning for tan as well and see that

for every A ∈ R there is a unique B ∈ [−π/2, π/2] for which tanB = A.

tan−1(x) is the unique value in [−π/2, π/2] whose tan is x, (11.6)

or, equivalently,

y = tan−1 x means that y ∈ [−π/2, π/2] and tan y is x. (11.7)

11.2 Monotone functions: terminology

We say that a function f is increasing if

f(s) ≤ f(t)

for all s, t in the domain of f for which s ≤ t. We say that f is strictly
increasing if

f(s) < f(t)

for all s, t in the domain of f for which s < t.
A function f is decreasing if

f(s) ≥ f(t)

for all s, t in the domain of f for which s ≤ t. We say that f is strictly
decreasing if

f(s) > f(t)
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for all s, t in the domain of f for which s < t.
Clearly, a function f is (strictly) increasing if and only if −f is (strictly)

decreasing. For this reason we will often state or prove results just for in-
creasing functions, it being generally understood from context that the cor-
responding result for decreasing functions also holds.

A monotone function is a function that is increasing or that is decreasing.
We say f is strictly monotone if f is stricly increasing or strictly decreasing.

The function
x+ = max{x, 0} (11.8)

is an increasing function that is not strictly increasing.

11.3 Inverse functions

Here is a somewhat strange result, guaranteeing continuity of certain types
of strictly monotone functions:

Proposition 11.3.1 If g is a strictly monotone function defined on a set
S ⊂ R such that the range g(S) is an interval then g is continuous.

The ideas developed for arcsin and arccos can be summarized in a general
way:

Proposition 11.3.2 If f is a continuous strictly monotone function on an
interval U ⊂ R then the range V of f is also an interval, and there is a
unique function f−1 defined on V such that

f−1
(
f(x)

)
= x for all x ∈ U . (11.9)

This inverse function f−1 is continuous.
The inverse function also satisfies

f
(
f−1(y)

)
= y for all y ∈ V . (11.10)

For example, the inverse of the function

[0,∞)→ [0,∞) : x 7→ x2

is the function
[0,∞)→ [0,∞) : A 7→

√
A.
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Proof. We work with the case when f is strictly increasing; the case of strictly
decreasing is settled in an exactly similar way (or by applying the result for
strictly increasing functions to −f in place of f).

To show that V is an interval we have to show that if c, d ∈ V , with c < d,
then every point between c and d is also in the range V of f . For c, d ∈ V
we have

c = f(a) and d = f(b),

for some a, b ∈ U . Now consider a point q strictly between c and d:

c < q < d.

This means
f(a) < q < f(b).

By the intermediate value theorem (keep in mind f is continuous there is a
point p ∈ (a, b) for which

q = f(p).

This means q ∈ V , the range of V . Thus V is an interval.
Now defined f−1 on V as follows. If y ∈ V then there is a point x ∈ U

with f(x) = y. There cannot be any other point in U whose image under f
is also y, because f is strictly increasing (points strictly below/above x are
mapped by f to points strictly below/above y). Set

f−1(y) = x if f(x) = y.

This proves (11.9), by simply writing in the value f(x) in place of y in
f−1(y) = x.

Applying f to both sides of f−1(y) = x shows that

f
(
f−1(y)

)
= f(x) = y,

which proves (11.10).
Continuity of f−1 follows on applying Proposition 11.3.1 to the function

g = f−1, whose range is the interval U . QED

Suppose f is a strictly increasing function defined on a set S. Then f(S)
can be thought of as S with the points p renamed as f(p), and the ordering
of the points is preserved:

f(s) < f(t) if and only if s < t.
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Thus, f(S) contains a largest element if and only if S contains a largest
element, and f(S) contains a smallest element if and only if S contains a
smallest element. This gives us:

Proposition 11.3.3 If f is a continuous, strictly increasing function, then
for any interval J in the domain of f , the image f(J) is of the same type as
J ; specifically,

(i) if J = [a, b] then f(J) = [f(a), f(b)];

(ii) if J = (a, b] then f(J) = (c, d], where c = inf f(J) and d = sup f(J) =
f(b);

(iii) if J = [a, b) then f(J) = [c, d), where c = inf f(J) = f(a) and d =
sup f(J);

(iv) if J = (a, b) then f(J) = (c, d), where c = inf f(J) and d = sup f(J).
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Chapter 12

Maxima and Minima

A fundamental feature of continuous functions is that they attain maximum
and minimum values on certain types of sets such as closed intervals [a, b],
for a, b ∈ R with a < b.

12.1 Maxima and Minima

The completeness property of the real line has another big consequence for
continuous functions: if f is continuous on the interval [a, b] then f(x) ac-
tually attains a maximum value at some point and a minimum value on the
interval [a, b].

Theorem 12.1.1 Let f be a continuous function on [a, b], where a, b ∈ R
with a < b. Then there exist c, d ∈ [a, b] such that

f(c) = inf
x∈[a,b]

f(x)

f(d) = sup
x∈[a,b]

f(x).
(12.1)

Before proceeding to logical reasoning here is our strategy for finding a
point where f reaches the value

M = sup
x∈[a,b]

f(x).

Let us follow a point t, starting at a and moving to the right towards b and
keep track of the ‘running supremum’

Sf (t) = sup
x∈[a,t]

f(x).

107
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If f(a) itself is already the maximum M then we are done; assuming then
that f(a) < M , surely the ‘first exit time’ t when Sf (t) escapes from below
the value M is where f actually takes the value M . Thus our guess for d is

d∗
def
= supBM , (12.2)

where BM is thet set of all t for which Sf (t) is below M :

BM = {t ∈ [a, b] : Sf (t) < M} . (12.3)

(We are assuming the initial value f(a) isn’t already M .) It is useful to have
in mind a graph of Sf : it increases (possibly remaining constant on stretches
of values of t) and once it hits the value M it stays there all the way to t = b.

It is intuitively clear that for t to the left of d∗ the value Sf (t) is < M
whereas for any t to the right of d∗ the value of Sf (t) is M ; this would imply
that that the supremum of f on any neighborhood of d∗ is in fact M . Then
from the definition of limit limx→d∗ f(x) as the unique value between suprema
and infima of f over neighborhoods of d∗ we would then have limx→d∗ f(x) =
M ; continuity of f at d∗ would then imply f(d∗) = M .

Observe that if Sf (x) < M then, since d∗ is an upper bound of BM , it
follows that d∗ ≥ x. Thus, no point to the right of d∗ has Sf -value < M .
Hence:

Sf (x) = M for all x > d∗. (12.4)

Proof of Theorem 12.1.1. We show only the existence of a point d where f
attains its maximum value. The argument for minimum is exactly similar
(or we can use the trick of applying the maximum result to −f in place of f
to find where f is minimum.)

Let us go through the remaining argument slowly, breaking it up into
pieces.

If f(a) happens to be equal to M then, of course, we are done, on taking
d to be a. Suppose from now on that f(a) < M . This implies, in particular,
that the set BM is not empty, containing at least the point a.

Consider now any neighborhood U of d∗. Choose any r ∈ U ∩ [a, b] with
r > d∗; what if d∗ = b? We will deal with that case later, assuming for
now that d∗ < b. Then, as already noted before in (12.4), Sf (r) = M .
Consequently,

sup
x∈U∩[a,b]

f(x) = M.
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Hence M satisfies

inf
x∈U∩[a,b]

f(x) ≤M ≤ sup
x∈U∩[a,b]

f(x),

wth the second ≤ being actually an equality. This is true for any neighbor-
hood U of d∗. Therefore, by our definition of limit,

lim
x→d∗

f(x) = M.

But f is continuous at d∗. Hence

f(d∗) = M,

and we are done.
Lastly suppose d∗ = b. Then taking any q ∈ [a, b] withq < b, we know that

q is not an upper bound of BM (for d∗ = b is the least upper bound of BM). So
there is a p > q in [a, b] which is in BM , and this means supx∈[a,p] f(x) < M .
Therefore also

sup
x∈[a,q]

f(x) < M.

But since supx∈[a,b] f(x) is M we must have supx∈(q,b] f(x) = M . Thus the
supremum of f over every neighborhood of d∗ (which is b) is M . Then by the
arhument used in the previous paragraph it follows again that f(d∗) = M .

The result for infx∈[a,b] f(x) is obtained similarly or just applying the

result for sup to the function −f instead of f . QED
The preceding heavily used result works for functions defined on closed

intervals [a, b], with a, b ∈ R. But what of functions defined on other types
of intervals? For example, for the function

1

x
for x ∈ (0,∞)

it is clear that the function is trying to reach its supremum ∞ at the left
endpoint 0 and its infimum 0 at the right endpoint ∞. Figure 12.1 shows
the graph of the function given on (0,∞) by x2 + 2

x
− 2. The function has

sup equal to ∞, which is the value it is trying to reach at both endpoints 0
and ∞ of the interval (0,∞); the inf occurs at x = 1 and the corresponding
minimum value is 12 + 2

1
− 2 = 1.



110 Ambar N. Sengupta 11/6/2011

x

y

y = x2 + 2
x
− 2

1

(1, 1)

Figure 12.1: Graph of x2 + 2
x
− 2, for x > 0.

Proposition 12.1.1 Suppose f is a continuous function on an interval U ⊂
R, with a, b ∈ R∗ being the left and right endpoints, and suppose that both
La = limx→a f(x) and Lb = limx→b f(x) exist and are in R (finite).

Then either f attains a maximum value in the interior of U or supx∈U f(x)
is the larger of the endpoint limits La and Lb.

Moreover, either f attains its minimum value at some point in the interior
of U or infx∈U f(x) is the least of the two endpoint limits La and Lb.

We will not work through the proof but sketch the ideas. Observe that
we can extend the function f to be defined at the endpoints a and b (if one
or both of them is not already in U) but setting f(a) = La and f(b) = Lb.
Then f is defined on the interval [a, b] ⊂ R∗ (denoting the left endpoint of
U by a), and f is allowed to take the values ±∞ at the endpoints a and b.
The resut of the argument follows the proof of Theorem 12.1.1.

12.2 Maxima/minima with infinities

The arguments used to prove existence of maxima and minima work without
much change for functions defined on subsets of R∗ and with values in R∗:

Proposition 12.2.1 If F : [a, b] → R∗ is continuous function, where a, b ∈
R∗ with a ≤ b, then F attains a maximum value and a minimum value on
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[a, b]. Thus, there exist points c, d ∈ [a, b] such that

F (c) = inf
x∈[a,b]

F (x)

F (d) = sup
x∈[a,b]

F (x).
(12.5)

12.3 Closed and bounded sets

Consider a set K ⊂ R that is closed and that lies inside an interval [a, b],
where a, b ∈ R and a ≤ b. Such a set is closed and bounded.

Theorem 12.3.1 If f : K → R is a continuous function on a nonempty
closed and bounded set K then f attains a maximum value and a minimum
value on this set K. Thus, there exist points c, d ∈ K such that

f(c) = inf
x∈K

f(x)

f(d) = sup
x∈K

f(x).
(12.6)
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Chapter 13

Tangents, Slopes and
Derivatives

The geometric notion of tangent is most easily understood for circles. A line
is tangent to a circle at a point if that is the only point where the line and
the circle meet. Another definition uses more geometry: a line is tangent to
the circle through the point P , with center C, is it is perpendicular to the
radius CP .

Both of these ideas are illuminating and reflect our intuition of what a
tangent line ought to be. However, neither notion works very well for other
curves. For example, visually it is perfectly clear that the line y = 1 is
tangent to the graph y = sinx, yet it meets this graph at infinitely many
points. On the other hand any ‘vertical’ line meets y = sinx at just one
point and yet such a line is surely not tangent to the graph. Since the graph
y = sinx has no natural notion of ‘center’, it is also useless to try to define
tangent as a line perpendicular to a ‘radius.’

A geometrically elegant formulation of the notion of tangent arises natu-
rally for the case of ellipses. Think of a circle C, and a tangent line l, at a
point P , to the circle, drawn on a transparent sheet of paper. When a light
is shown on the sheet from an angle, from a flashlight, the shadow C ′ cast
on a wall by the circle C is a stretched out version of the circle. This curve
C ′ is called an ellipse. The shadow l′ cast by the tangent line l is again a
straightline and is surely the tangent line to the ellipse C ′ at the point P ′,
which is the shadow of P . This notion goes back to the greek study of conic
sections.

Elegant though it is, even the method of the preceding paragraph fails

113
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to provide a definition of tangent that works for more general curves. For a
general curve C we need to view a tangent line at a point P as a limiting
form of the PQ (where Q is a ‘nearby’ point on C) as Q approaches P . This
is formalized in the next section.

x

y

P

Q

tangent line l

y = 1
2
x2

Figure 13.1: Tangent line and secant segment.

13.1 Secants and tangents

Consider a function f defined on R and think of the graph of f :

{(x, y) : y = f(x), x ∈ R}.
Consider now a point

P = (x∗, y∗)

on this graph.
A secant line is a straight line through P and any other point Q on the

graph.
Now think of all secant lines PQ, where Q = (x, y) runs over points on

the graph with x lying in some neighborhood U of x∗. There are possibly
many such lines, each with a different slope: (y − y∗)/(x− x∗).

We shall say that a line l is tangent to the graph of f at the point P if
it is the unique line that passes through P and has slope lying between the
sups and infs of slopes of all ‘nearby’ secant lines:

inf
x∈U,x 6=x∗

f(x)− f(x∗)

x− x∗
≤ slope(l) ≤ sup

x∈U,x 6=x∗

f(x)− f(x∗)

x− x∗
(13.1)
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for all neighborhoods U of x∗. If f is defined only on a subset S of R then
we modify this definition by replacing x ∈ U with x ∈ U ∩S. We interpet an
infinite value, ∞ or −∞, of slope to mean that the tangent line is ‘vertical’,
parallel to the y-axis.

Another way to view the uniqueness of tangent line is to observe that this
means that the slope of the tangent line is

slope of tangent at point P = lim
x→x∗

f(x)− f(x∗)

x− x∗
, (13.2)

with the existence of this limit signifying the existence of a tangent line. The
tangent to the graph y = f(x) at P (x∗, f(x∗)) is the line through P with slope
given by (13.2).

The slope of the tangent line to y = f(x) at a point P is also called the
slope of the curve y = f(x).

For some functions there may be multiple lines l with slope satisfying the
condition (13.1). For example, for the graph of

y = |x|
any line with slope ∈ [−1, 1] satisfies the condition (13.1). Here is an illus-
tration of a graph with a whole range of slopes satisfying the condition (13.1)
at the point P :

x

y

P

Occasionally we will consider such a ‘quasi-tangent’ line to a graph.
Though this is not a standard notion, let us agree that by a quasi-tangent
line at P (p, f(p)) to the graph y = f(x) for a function f we mean a line
through P of slope satisfying the bounds

inf
w∈U∩S,w 6=p

f(w)− f(p)

w − p
≤ slope of l ≤ sup

w∈U∩S,w 6=p

f(w)− f(p)

w − p
, (13.3)

for every neighborhood U of p, where S is the domain of the function f .
(Note that, as with tangent lines, this notion is meaningful only when p ∈ S
is not an isolated point of S.)

Thus, y = f(x) has a tangent line at P if and only if it has a unique
quasi-tangent line, and in this case the quasi-tangent line is the tangent line.
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13.2 Derivative

Consider a function f defined on a set S ⊂ R and let p be a point of S that
is not an isolated point. The derivative of f at p is defined to be:

f ′(p) = lim
x→p

f(x)− f(p)

x− p
. (13.4)

Thus the derivative f ′(p) is the slope of the tangent to the graph y = f(x) at
the point

(
p, f(p)

)
. Of course, if the graph fails to have a tangent line then

it fails to have a derivative.
Let us look at some simple examples. First consider the constant function

K whose value everywhere is 5:

K(x) = 5 for all x.

Common sense tells us that the slope of this is 0. We can check this readily
from the official definition

lim
x→p

K(x)−K(p)

x− p
= lim

x→p

0

x− p
= lim

x→p
0 = 0.

We can elevate this observaton slightly by observing that we don’t need K
be equal to 5 everywhere, but just on a neighborhood of p.

If the function f is constant near p, then f(x) = f(p), for x in a neigh-
borhood of p, and so the derivative f ′(p) is 0. This just says that the graph
is flat. Thus,

If a function is constant on a neighborhood of a point p then the
derivative of the function at p is 0.

Next, consider the function

g(x) = x for all x ∈ R.

Then for any real number p we have

lim
x→p

g(x)− g(p)

x− p
= lim

x→p

x− p
x− p

= lim
x→p

1 = 1.

Hence the slope of
y = x
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is 1: surely this is geometrically utterly obvious.
We can check readily that for the function x 7→ Mx + C, where M and

C are real numbers (constants) the derivative is M everywhere:

lim
x→p

(Mx+ C)− (Mp+ C)

x− p
= lim

x→p

Mx−Mp

x− p
= lim

x→p
M = M.

13.3 Notation

The derivative if f at p is denoted

f ′(p).

This is good for theoretical proofs and such but not very useful for practical
algebraic calculations.

If a formula is given for f(x) we denote the derivative of f at x by

df(x)

dx
= f ′(x).

The beginner’s error in this notation is to put in a value for x in df(x)/dx:
that is wrong usage of the notation:

df(3)
d3

is wrong notation.

Instead we should write

df(x)
dx

at x = 3, or df(x)
dx

∣∣∣
x=3

If we are writing y = f(x) then the derivative of f at x is

dy

dx
.

This notation meshes well with the derivative being the limit of the ratio of
the increase in y to the increase in x:

dy

dx
= lim

∆x→0

∆y

∆x
, (13.5)

where
∆y = yQ − yP , ∆x = xQ − xP ,
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with P being the point (x, y) = (x, f(x)) and Q(w, f(w)), and the limit
Q→ P is encoded in ∆x→ 0.

For algebraic calculations the notation f ′(p) is inconvenient. Instead we
use the notation

df(x)

dx

to denote the derivative of f at x. For example, for the function s given by

s(x) = x2 for all x ∈ R

we denote the derivative s′(x) by

s′(x) =
dx2

dx
.

Note that we don’t mean that this is an actual ratio, nor do we mean that
somehow the ‘denominator’ is d times x. The entire expression dx2/dx shoud
be viewed (at least at this stage) as one object, the derivative.

13.4 The derivative of x2

Let us work out the derivative of the function given by f(x) = x2 for all
x ∈ R at x = 3. This is just the slope of the tangent line to the graph

y = x2

at the point (3, 32):
The slope of the secant line PQ is

slope PQ =
x2 − 32

x− 3

To find the slope of the tangent we need to let Q approach P ; this means
x→ 3, and we are looking then at the limit

lim
x→3

x2 − 32

x− 3
.

We can work this out easily. (Warning: avoid the 0/0 trap!) We factor x2−32

as a product
x2 − 32 = (x− 3)(x+ 3)
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x

y

P (3, 32)

Q(x, x2)
y = x2

slope PQ = x2−32

x−3

Figure 13.2: A secant segment to y = x2 at P (3, 32).

and obtain

lim
x→3

x2 − 32

x− 3
= lim

x→3

(x− 3)(x+ 3)

x− 3

= lim
x→3

(x+ 3)

= 6.

(13.6)

Thus the slope of the tangent to y = x2 at the point (3, 32) is 6.
If you trace through the calculations above for a general point (p, p2) on

y = x2 you see that the slope of the tangent at (p, p2) is 2p:

lim
x→p

x2 − p2

x− p
= lim

x→p

(x− p)(x+ p)

x− p
= lim

x→p
(x+ p)

= 2p.

(13.7)

Thus the derivative of the function given by f(x) = x2 at x = p is 2p.
Using the notation df(x)/dx this is displayed as

dx2

dx
= 2x. (13.8)
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x

y

y = x3

P (x, x3)

Q(w,w3)

slope PQ = w3−x3
w−x

Figure 13.3: Secant segment for y = x3 at P (x, x3).

13.5 Derivative of x3

Let us do the calculation of the derivative for the function f(x) = x3. Fol-
lowing the method used for y = x2 we have first the picture

We can see that

slope of PQ =
w3 − x3

w − x
.

Letting Q→ P makes the secant line PQ approach the tangent line at P in
the limit. The slope of the tangent at P is then

slope of tangent at P = lim
w→x

w3 − x3

w − x
.

This just the derivative at x:

dx3

dx
= lim

w→x

w3 − x3

w − x

= lim
w→x

(w − x)(w2 + wx+ x2)

w − x
(using A3 −B3 = (A−B)(A2 + AB +B2)

= lim
w→x

(w2 + wx+ x2)

= x2 + x2 + x2

= 3x2

(13.9)
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13.6 Derivative of xn

The procedure used for x2 and xn works for xn, where n is any positive
integer. This leads to

dxn

dx
= nxn−1. (13.10)

Thus, for example, the slope of the curve

y = x7

at the point (1, 1) is

7 · 16 = 7.

13.7 Derivative of x−1 = 1/x

For 1/x we have the graph in Figure 13.4.

P (x, 1/x)

Q(w, 1/w)

slope PQ =
1
w
− 1

x

w−x

Figure 13.4: Secant segment for y = 1/x at P (x, 1/x).

The derivative at x is the slope of the tangent at P (x, 1/x):

d 1
x

dx
= lim

Q→P
(slope of PQ).

The slope of PQ is:

slope of PQ =
(1/w)− (1/x)

w − x
.
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Then we can calculate the derivative as follows:

d(1/x)

dx
= lim

w→x

(1/w)− (1/x)

w − x

= lim
w→x

(x− w)/(xw)

w − x
(using 1

A
− 1

B
= B−A

AB
)

= lim
w→x

x− w
xw(w − x)

= lim
w→x

−1

xw

= − 1

x2
.

(13.11)

Thus:

d(1/x)

dx
= − 1

x2
.

Observe that this follows the formula dxn/dx = nxn−1:

dx−1

dx
= −1 · x−2,

even though n = −1 is not a positive integer.

The negative sign on −1/x2 indicates a downward sloping tangent.

13.8 Derivative of x−k = 1/xk

Let k be a positive integer and consider the function

x−k =
1

xk
.
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We can calculate its derivative:

d(1/xk)

dx
= lim

w→x

(1/wk)− (1/xk)

w − x

= lim
w→x

(xk − wk)/(xkwk)
w − x

(using 1
A
− 1

B
= B−A

AB
)

= lim
w→x

xk − wk

xkwk(w − x)

= lim
w→x

(−1) · w
k − xk

w − x
· 1

xkwk

= (−1) · kxk−1 · 1

x2k
,

(13.12)

where in the last step we used the derivative of xk:

lim
w→x

wk − xk

w − x
= kxk−1.

Thus
d(1/xk)

dx
= −k 1

x2k−k+1
= −k 1

xk+1
. (13.13)

Writing n for −k this reads

dxn

dx
= nxn−1,

correct again, even though n is now a negative integer.

13.9 Derivative of x1/2 =
√
x

Consider the function
s(x) =

√
x = x1/2

defined on all x ≥ 0. Consider any p ≥ 0. Then the derivative of this function
at p is the slope of the tangent at P (p,

√
p) to the graph y =

√
x, and we

know that
slope of tangent at P = lim

Q→P
(slope of PQ).
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P (p,
√
p)

Q(w,
√
w)

slope PQ =
√
w−
√
x

w−x

Figure 13.5: Secant segment for y =
√
x at P (p,

√
p).

s′(p) = lim
w→p

√
w −√p
w − p

= lim
w→p

(
√
w −√p)(

√
w +
√
p)

(w − p)(
√
w +
√
p)

(using (A−B)(A+B) = A2 −B2)

= lim
w→p

w − p
wp(
√
w +
√
p)

= lim
w→p

1

2(
√
w +
√
p)

=
1

2
√
p
,

(13.14)

when p > 0. If p = 0 we can just set p = 0 in the preceding calculations
except for the very last line, being careful to note that the values w we work
with are > 0 (because s(w) is not defined for w < 0; thus,

s′(0) = lim
w→0+

1

2(
√
w +
√

0)
=∞.

Thus the derivative of
√
x is

d
√
x

dx
=

1

2
√
x
, (13.15)

when x > 0, and is ∞ when x = 0.
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Note that √
x = x1/2 and

1√
x

= x−1/2,

and so the right side in (13.15) is

1

2
x−1/2 =

1

2
x

1
2
−1.

Thus
dx1/2

dx
=

1

2
x

1
2
−1, (13.16)

again agreeing with
dxn

dx
= nxn−1,

now with n = 1/2.

13.10 Derivatives of powers of x

Let r = p/q be a rational number, where p and q are integers, and q 6= 0.
Then for any x ≥ 0 the power xp/q is the non-negative real number whose
q-th power is xp:

(xp/q)q = xp.

The existence of such a real number xr follows from the intermediate value
theorem, and ultimately is a consequence of the completeness of the real line.

The following derivative formula holds:

dxr

dx
= rxr−1, (13.17)

and can be proved by extension of the methods used before for negative
powers of x and for x1/2.

13.11 Derivatives with infinities

It does not seem useful to bother defining the derivative F ′(∞), for a function
F , defined at ∞. A natural extension of the geometric intuition of the
derivative in terms of tangent lines leads to the definition

F ′(p) = lim
x→p

F (x)

x
if p ∈ {−∞,∞}. (13.18)
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If F (x) approaches a finite limit F (∞), as x → ∞, then F ′(p) is 0, which
conforms to intuition: the tangent line at x = ∞ is the ‘horizontal’ line
y = F (∞).



Chapter 14

Derivatives of Trigonometric
Functions

In this chapter we work out the derivative of sin, cos, and tan, by using their
algebraic properties and the fundamental limits

lim
θ→0

sin θ

θ
= 1 and lim

θ→0

tan θ

θ
= 1.

14.1 Derivative of sin is cos

The derivative of the funtion sin at x ∈ R is the slope of the graph of

y = sinx

at the point P (x, sinx). Thus it is:

sin′ x = lim
w→x

(slope of PQ),

where Q is the point (w, sinw).
Now the slope of PQ is

slope of PQ =
sinw − sinx

w − x
.

We have then

sin′ x = lim
w→x

sinw − sinx

w − x
.
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P (x, sinx)

Q(w, sinw)

y = sinx

slope PQ = sinw−sinx
w−x

Figure 14.1: Secant segment for y = sinx at P (x, sinx).

To work this out there are two possible routes. We follow one, using the
relation (8.22), which implies:

sinw − sinx = 2 sin
w − x

2
cos

w + x

2
. (14.1)

Using this we have

sin′ x = lim
w→x

2 sin w−x
2

cos w+x
2

w − x

= lim
w→x

2 sin w−x
2

w − x
cos

w + x

2
.

(14.2)

To make this look more like something involving sin θ/θ (whose limit we
understand), we write this as

sin′ x = lim
w→x

2 sin w−x
2

2w−x
2

cos
w + x

2

= lim
w→x

sin w−x
2

w−x
2

cos
w + x

2

= 1 · cos
x+ x

2
.

(14.3)

Thus we have found the derivative of sin:

d sinx

dx
= sin′ x = cosx. (14.4)
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14.2 Derivative of cos is − sin

The derivative of the funtion cos at x ∈ R is

cos′ x = lim
w→x

cosw − cosx

w − x
.

Recall the relation (8.23):

cosw − cosx = −2 sin
w − x

2
sin

w + x

2
. (14.5)

Using this we have

cos′ x = − lim
w→x

2 sin w−x
2

sin w+x
2

w − x

= − lim
w→x

2 sin w−x
2

w − x
cos

w + x

2

= − lim
w→x

2 sin w−x
2

2w−x
2

sin
w + x

2

= − lim
w→x

sin w−x
2

w−x
2

sin
w + x

2

= −1 · sin x+ x

2
.

(14.6)

Thus we have found the derivative of sin:

d cosx

dx
= cos′ x = − sinx. (14.7)

14.3 Derivative of tan is sec2

The derivative of the funtion tan at x ∈ R is

tan′ x = lim
w→x

tanw − tanx

w − x
.

Recall the relation (8.24):

tan(a− b) =
tan a− tan b

1 + tan a tan b
.
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From this we have

tan a− tan b = (1 + tan a tan b) tan(a− b).

Taking w for a and x for b we have

tanw − tanx = (1 + tanw tanx) tan(w − x).

We can proceed to the derivative now:

tan′ x = lim
w→x

tanw − tanx

w − x

= lim
w→x

(1 + tanw tanx) tan(w − x)

w − x

= lim
w→x

(1 + tanw tanx)
tan(w − x)

w − x
= (1 + tanx tanx) · 1,

(14.8)

because

lim
θ→0

tan θ

θ
= 1.

Thus,
tan′ x = 1 + tan2 x.

Now recall that 1 + tan2 x is sec2 x. Hence

d tanx

dx
= tan′ x = sec2 x. (14.9)



Chapter 15

Differentiability and Continuity

15.1 Differentiability implies continuity

We know that not all continuous functions are differentiable. For example,
the absoute value function is continuous but is not differentiable at 0:

x

y

y = |x|

However, if a function is differentiable then it is continuous:

Theorem 15.1.1 Suppose f is a function defined on a set S ⊂ R and is
differentiable at a point p ∈ S. Then f is ccontinuous at p.

Proof. Recall that the derivative f ′(p) is given by

f ′(p) = lim
x→p

f(x)− f(p)

x− p
.

Note that this is meaningful only when p ∈ S is not an isolated point of S.
We wish to show that f(x)→ f(p) when x→ p. For this we first write f(x)
as f(p) plus the amount it deviates from f(p):

f(x) = f(p) + f(x)− f(p).
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Since we have information about f(x)−f(p)
x−p let us bring this in:

f(x) = f(p) + (x− p)
[
f(x)− f(p)

x− p

]
.

Now let x→ p:
lim
x→p

f(x) = f(p) + 0 · f ′(p) = f(p),

where we used the given fact that f ′(p) exists and is finite (the application
of the ‘limit of product equals product of limits’ argument would fail if f ′(p)

were ∞ or −∞). QED
We have allowed infinite values for derivatives. For example, the function

f specified by

f(x) =


−1 if x < 0;

0 if x = 0;

1 if x > 0,

has derivative
f ′(0) =∞.

But note that f is not continuous at 0.
There are plenty of functions that are continuous everywhere and yet

differentiable nowhere. They are hard to visualize and have severely zig-zag
graphs.



Chapter 16

Using the Algebra of
Derivatives

In this chapter we use the basic algebraic rules for working with derivatives.
In summary the basic algebraic rules are

d(U + V )

dx
=
dU

dx
+
dV

dx

d(kU)

dx
= k

dU

dx
d(UV )

dx
=
dU

dx
V + U

dV

dx
(product rule)

d 1
V

dx
= − 1

V 2

dV

dx

dU
V

dx
=
V dU

dx
− U dV

dx

V 2
(quotient rule)

(16.1)

where U and V are differentiable functions for which all the quantities on
the right sides exist and are finite, and k is any constant (real number). We
have retained some redundancy here; for example, that d(kU)/dx = kdU/dx
can be deduced from the ‘product rule’ for d(UV )/dx, keeping in mind that
dk/dx = 0.
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16.1 Using the sum rule

The sum rule is so easy to use that it is best forgotten that we are actually
using a rule (that needs to be proved). For example

d(5 sinx+ 4x3 − 3)

dx
=
d(5 sinx)

dx
+
d(4x3 − 3)

dx
(assuming these derivatives exist and are finite)

= 5
d sinx

dx
+
d(4x3)

dx
+
d(−3)

dx
(assuming these derivatives exist and are finite)

= 5 cos x+ 4
dx3

dx
+ 0

= 5 cos x+ 12x2.

For this very first example we were careful to state most of the steps and
logic, but there is no need to be so extreme. Mostly we can write down the
derivative of a sum directly:

d(5 sinx− 3x5 + 2x− 4)

dx
= 5 cos x− 15x4 + 2.

16.2 Using the product rule

The product rule gets us to more complicated functions. Take for example,

y =
√
x sinx.

Using the product rule we find the derivative very easily:

dy

dx
=
d
√
x

dx
sinx+

√
x
d sinx

dx
=

1

2
√
x

sinx+
√
x cosx.

We can use the product rule for multiple products:

d(UVW )

dx
=
dUV (W )

dx

=
dU

dx
VW + U

dVW

dx

=
dU

dx
VW + U

dV

dx
W + UV

dW

dx
.

(16.2)
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Clearly this patterns works for any number of products.
Here is another example of the product rule

d(t+ tan t)(2t2 +
√
t)(4t− cos t)

dt

=
d(t+ tan t)

dt
(2t2 +

√
t)(4t− cos t) + (t+ tan t)

(2t2 +
√
t)

dt

+ (t+ tan t)(2t2 +
√
t)
d(4t− cos t)

dt

= (1 + sec2 t)(2t2 +
√
t)(4t− cos t) + (t+ tan t)(4t+

1

2
√
t
)(4t− cos t)

+ (t+ tan t)(2t2 +
√
t)(4 + sin t).

16.3 Using the quotient rule

Let us first see quickly how to use the formula

(1/V )′ = − 1

V 2
V ′.

Here is an example

d

dw

(
1

sinw + cosw + 1

)
= − 1

(sinw + cosw + 1)2

d(sinw + cosw + 1)

dw

= − 1

(sinw + cosw + 1)2
(cosw − sinw).

Now let us do an example of the full quotient rule

(U/V )′ =
V U ′ − UV ′

V 2
.

We have

d

dw

(
w + tanw

sinw + cosw + 1

)
=

(sinw + cosw + 1)d(w+tanw)
dw

− (w + tanw)d(sinw+cosw+1)
dw

(sinw + cosw + 1)2

=
(sinw + cosw + 1)(1 + sec2w)− (w + tanw)(cosw − sinw)

(sinw + cosw + 1)2
.
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Chapter 17

Using the Chain Rule

The chain rule, along with the algebraic rules we have already studied, makes
it possible to work out derivatives of functions given by highly complicated
expressions.

17.1 Initiating examples

Before stating the chain rule in the abstract we can see its essence in a few
basic examples. As a first example, look at

d sin(x2 + 3x)

dx
=
[
cos(x2 + 3x)

]
(2x+ 3)

The sin has become cos (which is the derivative of sin), and then we have a
multiplier 2x+ 3 which we recognize to be the derivative of x2 + 3x.

Next look at

d(4t3 − 2 sin t)1/3

dt
=

1

3
(4t3 − 2 sin t)1/3−1 · (12t2 − 2 cos t).

We recognize the factor on the right as the derivative of the function (·)1/3,
evaluated at 4t3 − 2 sin t; next, this is multiplied by the derivative of 4t3 −
2 sin t.

As our last initiating example, look at

d sin
(√

x4 + x2
)

dx
=
[
cos
(√

x4 + x2
)]
· 1

2
√
x4 + x2

· (4x3 + 2x).
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This is a chain rule applied twice: first the sin is differentiated to obtain
cos
(
·
)
, next

√
· is differentiated to produce 1

2
√
· , and, finally, x4 + x2 is differ-

entiated to produce the last factor 4x3 + 2x.

17.2 The chain rule

Consider a function H that is the composite of functions F and G:

H(x) = F
(
G(x)

)
.

This means that to calculate the value H(x) we must first work out the value

G(x)

and then apply the function F to it:

F
(
G(x)

)
.

For example, the function given by

√
x4 + x2

is the composite of the square root function
√
· with the function given by

x4 + x2.
As another example,

sin
√
w

is the cmomposite of sin with
√
·.

The composite
H = F ◦G

is the function whose value is given by

H(t) = F
(
G(t)

)
,

for every value t for which G(t) is defined and F
(
G(t)

)
is also defined. For

example, the composite function given by

√
1 + x

is defined only for x ≥ −1.
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The chain rule says that if

H = F ◦G

then
H ′(x) = F ′

(
G(x)

)
G′(x) (17.1)

provided that values and derivatives on the right exist and are finite.
Returning to examples, we have then

d tan
√
x

dx
=
[
sec2
√
x4 + 3x2

] 1

2
√
x
,

because we recognize that
tan
√
x

is obtained by applying tan to
√
x:

tan
√
x = (tan ◦√)(x).
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Chapter 18

Proving the Algebra of
Derivatives

We now explore precise statements and proofs for the rules of algebra for
derivatives.

18.1 Sums

If f and g are functions with domain S ⊂ R then their sum is the function
f + g on S whose value at any x ∈ S is given by

(f + g)(x) = f(x) + g(x).

Suppose now that p ∈ S is a point where the derivatives f ′(p) and g′(p) exist.
Then

(f + g)′(p) = f ′(p) + g′(p) (18.1)

if this sum is defined (that is not ∞+ (−∞) or (−∞) +∞).
This result follows directly from the fact that the limit of a sum is the

sum of the limits.

18.2 Products

If f and g are functions with domain S ⊂ R then their product is the function
fg on S whose value at any x ∈ S is given by

(fg)(x) = f(x)g(x).
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For proving the product rule we have to bring in a useful little geometric
observation about products. Notice that if a rectangle, whose sides are A
and B, gets enlarged so that it becomes a C by D rectangle then its area
increases by

CD − AB = CD − AD + AD − AB
= (C − A)D + A(D −B)

= (C − A)(D −B +B) + A(D −B)

= (C − A)(D −B) + (C − A)B + A(D −B).

(18.2)

Proposition 18.2.1 Let f and g be functions on a set S ⊂ R, and at p ∈ S
is a point where f and g are both differentiable (that is, the derivatives f ′(p)
and g′(p) exist and are finite). Then

(fg)′(x) = f ′(x)g(x) + f(x)g′(x). (18.3)

Proof. Recall that for any function h the derivative h′(p) is defined to be

h′(x) = lim
w→x

h(w)− h(x)

w − x
.

Let us apply this to h = fg. Then

(fg)′(w) = lim
w→x

f(w)g(w)− f(x)g(x)

w − x
. (18.4)

Now we split the numerator following the idea of (18.2):

f(w)g(w)− f(x)g(x) = [f(w)− f(x)] [g(w)− g(x)]

+ [f(w)− f(x)] g(x) + f(x) [g(w)− g(x)] .

Now divide by w − x to obtain

f(w)g(w)− f(x)g(x)

w − x
= [f(w)− f(x)]

[
g(w)− g(x)

w − x

]
+

[
f(w)− f(x)

w − x

]
g(x) + f(x)

[
g(w)− g(x)

w − x

]
.
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The ratio f(w)−f(x)
w−x approaches the derivative f ′(x) when w → x, and similarly

for g(w)−g(x)
w−x , so we rewrite everything in terms of these ‘difference quotients’:

f(w)g(w)− f(x)g(x)

w − x
= (w − x)

[
f(w)− f(x)

w − x

] [
g(w)− g(x)

w − x

]
+
f(w)− f(x)

w − x
g(x) + f(x)

g(w)− g(x)

w − x
.

Now just let w → x:

lim
w→x

f(w)g(w)− f(x)g(x)

w − x
= 0 · f ′(x) · g′(x)

+ f ′(x)g(x) + f(x)g′(x),

which works because the derivatives f ′(x) and g′(x) have been assumed to
exist and be finite. Thus fg is differentiable at x and

(fg)′(x) = f ′(x)g(x) + f(x)g′(x). QED

18.3 Quotients

We turn now to proving the quotient rule:

(f/g)′(x) =
g(x)f ′(x)− f(x)g′(x)

g(x)2
, (18.5)

valid whenever f and g are functions defined on some common domain S
and x is a point of S where f and g are both differentiable and g(x) 6= 0.

From the definition of the derivative, (f/g)′(x) is the limit of

f(w)
g(w)
− f(x)

g(x)

w − x
(18.6)

as w → x. Let us rework the numerator so it involves mainly the differences
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f(w)− g(w) and g(w)− g(x):

f(w)

g(w)
− f(x)

g(x)
=
f(w)g(x)− f(x)g(w)

g(w)g(x)

=
[f(w)− f(x) + f(x)] g(x)− f(x) [g(w)− g(x) + g(x)]

g(w)g(x)

=
[f(w)− f(x)] g(x) + f(x)g(x)− f(x) [g(w)− g(x)]− f(x)g(x)

g(w)g(x)

=
[f(w)− f(x)] g(x)− f(x) [g(w)− g(x)]

g(w)g(x)
.

The preceding algebra may look very complicated at first but it has a natual
and simple thinking behind it: at each stage where we see f(w) we write it
in terms of the difference f(w)− f(x) as f(w)− f(x) + f(x), and the same
for g(w).

Thus (
f(w)
g(w)
− f(x)

g(x)

)
w − x

=

[
f(w)−f(x)

w−x

]
g(x)− f(x)

[
g(w)−g(x)
w−x

]
g(w)g(x)

. (18.7)

Now we let w → x. To deal with the denominator term g(w), we need to
use the fact the the differentiability of g at x makes it continuous as x:

g(w)→ g(x),

as w → x. Applying this to the identity (18.7) produces

lim
w→x

(
f(w)
g(w)
− f(x)

g(x)

)
w − x

=
f ′(x)g(x)− f(x)g′(x)

g(x)g(x)
,

which is what we wished to prove. QED
If in the quotient rule we take the numerator to be the constant function

1 we obtain

(1/V )′ =
V · 1′ − 1 · V ′

V 2
=

0− V ′

V 2
= − 1

V 2
V ′,

a useful formula in itself.



Chapter 19

Proving the Chain Rule

It is easy to understand why the chain rule works. But, as we shall see,
turning this easy understanding into a proof runs into a snag. For the official
proof we then follow a different line of reasoning.

19.1 Why it works

Consider the composite function F ◦G:

y = F
(
G(x)

)
.

To work out the derivative dy/dx, let us introduce some notation:

y = F (u) where u = G(x).

Then
y = F (G(x)) = H(x),

and
∆y

∆x
=

∆y

∆u

∆u

∆x
. (19.1)

Letting ∆x→ 0 gives
dy

dx
=
dy

du

du

dx
. (19.2)

For example, for the function

y =
√

1 + sin x,

145
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we take u = 1 + sinx, and then

y =
√
u and u = 1 + sinx,

so that
dy

dx
=
dy

du

du

dx
=

1

2
√
u

cosx =
1

2
√

1 + sin x
cosx.

This is clearly the chain rule as we have seen and used before.
The argument used above is natural but has one technical gap. What if

the denominator ∆u = ∆G(x) keeps hitting 0? Then the first ratio on the
right in (19.1) is undefined and the argument breaks down.

There are two ways to deal with this road block. Either we can try to
tread through the obstacle very carefully, or we can try an entirely different
pathway, one that is less natural but one that gets us to the destination faster.
We will go through such a proof in the next section. This is a situation one
sometimes faces in trying to construct a proof out of a reasonable idea. In
the end, however, the ‘reasonable idea’ often gives better insight into ‘why’
the result is true. (In fact, the idea does provide a proof in the case G′(x) is
not 0.)

19.2 Proof the chain rule

A proof of the chain rule can be built out of the following useful observation:

Lemma 19.2.1 Let f be a function, with domain S ⊂ R, differentiable at a
point p ∈ R. Then there is a function fp on S, which is continuous at p, and
for which

f(x) = f(p) + (x− p)fp(x) for all x ∈ S, (19.3)

and
fp(p) = f ′(p).

There is a more enlightening way to state (19.3):

f(x) = f(p) + (x− p)f ′(p) + εp(x) for all x ∈ S, (19.4)

where

lim
x→p

εp(x)

x− p
= 0, (19.5)
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because εp(x) = (x − p)[fp(x) − f ′(p)]. To understand the significance of
(19.4) observe that the first two terms of the right describe the y-value of the
tangent line to y = f(x) at p, and so condition (19.4) says:

lim
x→p

f(x)− Tpf(x)

x− p
= 0, (19.6)

where

y = Tpf(x)
def
= f(p) + (x− p)f ′(p)

is the equation of the tangent to the graph of f at
(
p, f(p)

)
.

x

y

P

p x

Q

T

tangent line y = f(p) + (x− p)f ′(p)

y = f(x)

QT = f(x)− [f(p) + (x− p)f ′(p)]

Figure 19.1: The tangent as an approximation to the graph

Proof. Simply note that

f(x) = f(p) + f(x)− f(p) = f(p) + (x− p)
[
f(x)− f(p)

x− p

]
, (19.7)

for all x ∈ S with x 6= p. We want to denote the ratio f(x)−f(p)
x−p by fp(x).

However, we need to say what fp(p) is, for at x = p the ration f(x)−f(p)
x−p is

not defined. But, we do know that as x→ p, the ration f(x)−f(p)
x−p approaches

f ′(p). So let us define the function fp on S by

fp(x) =

{
f(x)−f(p)

x−p if x ∈ S and x 6= p;

f ′(p) if x = p.
(19.8)
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Then

lim
x→p

fp(x) = lim
x→p

f(x)− f(p)

x− p
= f ′(p) = fp(p),

which shows that fp is continuous at p. Moreover, from (19.7),

f(x) = f(p) + (x− p)fp(x)

for x ∈ S wthe x 6= p. But putting in x = p shows that this is also valid
when x = p. QED

Now we can prove the chain rule.

Proposition 19.2.1 Let f and g be functions on subsets of R, and let S0 be
the set of all x for which the composite

f ◦ g : x 7→ f
(
g(x)

)
is defined. Suppose that p is a point of S0 such that g is differentiable at p
and f is differentiable at g(p). Assume also that p is not an isolated point of
S0. Then the function f ◦ g is differentiable at p and

(f ◦ g)′(p) = f ′
(
g(p)

)
g′(p). (19.9)

We can avoid all the worrying about domains if we simply assume f ◦ g
is defined in a neighborhood of p. Thus, if f ◦ g is defined in a neighborhood
of p, g is differentiable at p and f is differentiable at g(p) then f ◦ g is
differentiable at p and (19.9) holds.
Proof. Let

q = g(p).

Recall from Lemma 19.2.1 the functions fq and gp. Then

f
(
g(x)

)
= f(q) +

(
g(x)− q

)
fq
(
g(x)

)
= f(q) +

(
q + (x− p)gp(x) − q

)
fq
(
g(x)

)
= f(q) + (x− p)gp(x)fq

(
g(x)

) (19.10)

for all x in the domain of f ◦ g. Then

f
(
g(x)

)
− f

(
g(p)

)
x− p

= gp(x)fq
(
g(x)

)
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for all x ∈ S0 with x 6= p. Now letting x→ p (recall that p has been assumed
to be a limit point of S0) we have

lim
x→p

f
(
g(x)

)
− f

(
g(p)

)
x− p

= lim
x→p

gp(x)fq
(
g(x)

)
= gp(p)︸ ︷︷ ︸

g′(p)

fq(g(p))︸ ︷︷ ︸
f ′
(
g(p)
) (19.11)

where in the last step we used several observations and facts: (i) because gp is
continuous at p the limit limx→p gp(x) is gp(p), (ii) fq is continuous at q and g
is continuous at p (because g is differentiable at p) and so limx→p fq

(
g(x)

)
=

fq(g(p)); (iii) both gp(p) = g′(p) and fq(g(p)) = fq(q) = f ′(q) are finite (real
numbers).
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Chapter 20

Using Derivatives for Extrema

Derivative can be used to find maximum and minimum values of functions.
For example, we will see soon how to find maximum and minimum values of

g(x) = 2x3 − 6x2 + 1

of x ∈ [−1, 1].
For a function f on a closed interval [a, b], where a, b ∈ R and a < b, here

is the strategy for finding maximum and minimum values:

(i) work out the derivative f ′(x) and find the values of x in the interval
[a, b] where f ′(x) is 0;

(ii) the maximum (minimum) of f is the largest (smallest) of the values of
f at the points where f ′ is 0 and the endpoint values f(a) and f(b),

assuming that f is continuous on [a, b] and is differentiable in the interior
(a, b) (or at least at those points in the interior where f reaches maxi-
mum/minimum value).

To see how this works let us apply it to the function g(x) = 2x3− 6x2 + 1
for x ∈ [−1, 1]. The derivative is

g′(x) = 6x2 − 12x = 6x(x− 2).

This is 0 at x = 0 and at x = 2. Snce x = 2 is outside the domain [−1, 1],
we ignore it. Now we compute the values of g at x = 0 and at the endpoints
1 and −1:

g(0) = 1 g(1) = −3, g(−1) = −7.
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The largest value of g(x) is therefore 1, occurring at x = 0, and the smallest
value is −7, occurring at x = −1.

The proof that this strategy works is postponed to Chapter 21.
If the function f is defined on the whole real line R or intervals such as

(2,∞), we have to modify step (ii) above to:

(ii)’ the supremum (infimum) of a function f , defined on an interval U , is
the largest (smallest) of the values of f at the points where f ′ is 0 and
the endpoint limit values limx→a f(a) and limx→b f(b), where a and b
are the endpoints of the interval U and the limits here are assumed to
exist.

If the limits limx→a f(x) and limx→b f(b) don’t exist then, of course, this
method doesn’t work.

The term ‘maximum’ is used when the supremum is actually attained at
a point in the domain of the function; similarly, we speak of the ‘minimum’
value of a function if the infimum is actually attained in the domain of the
function. For example, 1/x, for x ∈ (0,∞), has no maxima or minima but
its supremum is ∞ (as x ↓ 0) and its infimum is 0 (as x→∞).

20.1 Quadratics with calculus

Let us apply the method of calculus to find the minimum value of the
quadratic function

y(x) = 3x2 − 6x+ 16

The derivative is
6x− 6

and this is 0 when x = 1. The value of y here is

y(1) = 13.

There are no boundary points given, and our function is defined on the entire
real line R. So we need to work out the endpoint limits:

lim
x→∞

y(x) =∞ and lim
x→−∞

y(x) =∞.

Thus
sup
x∈R

y(x) =∞,
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and
inf
x∈R

y(x) = y(1) = 13.

20.2 Quadratics by algebra

There is a way to obtain the minimum value of a quadratic function by pure
algebra, with no use of calculus. This is by using the ancient method of
‘completing the square’:

3x2−6x+16 = 3(x2−2x)+16 = 3(x2−2x+1−1)+16 = 3(x2−2x+1)−3+16

which shows that
3x2 − 6x+ 16 = 3(x− 1)2 + 13.

The first term on the right is always ≥ 0, with minimum value 0 when x = 1.
Hence 3x2 − 6x+ 16 has minimum value

0 + 13 = 13,

and this value is attained when x = 1.
Let us now look at the general quadratic

Ax2 +Bx+ C,

with A, B, C being real numbers, with A 6= 0. Completing the square we
have

Ax2 +Bx+ C = A

[
x2 +

B

A
x

]
+ C

= A

[
x2 + 2

B

2A
x+

(
B

2A

)2

−
(
B

2A

)2
]

+ C

= A

[
x2 + 2

B

2A
x+

(
B

2A

)2
]
− A

(
B

2A

)2

+ C

= A

[
x+

B

2A

]2

− B2

4A
+

4AC

4A

= A

[
x+

B

2A

]2

− (B2 − 4AC)

4A

(20.1)
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Thus,

Ax2 +Bx+ C = A

[
x+

B

2A

]2

− (B2 − 4AC)

4A
(20.2)

If A > 0 then the first term on the right is always ≥ 0, with minimum value
occurring at x = −B/(2A):

min
x∈R

(Ax2 +Bx+ C) = −(B2 − 4AC)

4A
if A > 0. (20.3)

If A is negative then the first term on the right in (20.2) is always ≤ 0 and
the largest it gets is 0, this happening when x = −B/(2A); so

max
x∈R

(Ax2 +Bx+ C) = −(B2 − 4AC)

4A
if A < 0. (20.4)

This is a clean and nice solution, but in practice it is faster to simply observe
that

(Ax2 +Bx+ C)′ = 2Ax+B

is 0 when x = −B/(2A) and this point corresponds to the maximum/minimum
value of Ax2 +Bx+ C.

The classic use of the method of completing the square is in obtaining
the solutions of the quadratic equation

Ax2 +Bx+ C = 0 (20.5)

Using the completed square form this reads

A

[
x+

B

2A

]2

− (B2 − 4AC)

4A
= 0

from which we have [
x+

B

2A

]2

=
(B2 − 4AC)

4A2
.

Taking square roots shows that

x+
B

2A
= ±
√
B2 − 4AC

2A
,

where ± signifies that there are two choices. Thus the two solutions of the
quadratic equation (20.5) are

α =
−B +

√
B2 − 4AC

2A
and β =

−B −
√
B2 − 4AC

2A
.
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Observe that

α− β =

√
B2 − 4AC

A
.

The square of this is

(α− β)2 =
B2 − 4AC

A2
.

The quantity

A2(α− β)2 = B2 − 4AC (20.6)

is called the discriminant of the quadratic

Ax2 +Bx+ C.

If the discriminant is 0 then (20.6) shows that α = β. On the other hand if
the discriminant is not 0 then the roots α and β are distinct.

If the discriminant is < 0 then looking at the expressions for α and β
we see that they are not real numbers (since square roots of negatives are
involved).

20.3 Distance to a line

We work out the distance of a point

P (xP , yP )

from a line L:

y = mx+ k.

This distance is, by definition, the shortest distance from P to any point on
the line:

d(P,L)
def
= inf

Q∈L
d(P,Q),

where

d(P,Q) = distance between the points P and Q.

If Q has coordinates (x, y) then

d(P,Q) =
√

(x− xP )2 + (y − yP )2.
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We have to find the minimum value of this as (x, y) runs over the line L. We
can avoid unpleasant calculations by minimizing the distance squared:

d(P,Q)2 = (x− xP )2 + (y − yP )2. (20.7)

Clearly if we can find the minimum value of this then we can just take the
square-root to find the minimum distance. Keep in mind that in (20.7) (x, y)
is on the line L and so

y = mx+ k.

If we write out d(P,Q)2 in terms of x we have

d(P,Q)2 = (x− xP )2 + (mx+ k − yP )2.

This is clearly quadratic in x:

d(P,Q)2 = x2 − 2xPx+ x2
P +m2x2 + 2m(k − yP )x+ (k − yP )2

= (1 +m2)x2 + 2[−xP + (k − yP )]x+ x2
P + (k − yP )2.

The coefficient of x2 is

1 +m2,

which is positive. From our study of quadratic functions we know then that
d(P,Q)2 does attain a minimum value and at the point Q0 where it attains
minimum the derivative

d

dx
d(P,Q)2

is 0.
The derivative of d(P,Q)2 with respect to x is:

d

dx
d(P,Q)2 = 2(x− xP ) + 2(y − yP )

dy

dx
= 2[(x− xP ) + (y − yP )m].

This is 0 if and only if (x, y) is the special point

Q0(x0, y0)

which satisfies

(x0 − xP ) + (y0 − yP )m = 0. (20.8)
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It is worth observing that this implies

y0 − yP
x0 − xP

= − 1

m
, (20.9)

assuming that m 6= 0 and that P isn’t actually on the line L.
The geometric significance of (20.9) is that the line PQ0 has slope −1/m,

and this means that

PQ0 is perpendicular to the line L.

Geometrically this makes perfect sense.
Now returning to (20.8), we subsitute in the value of y as mx+k to obtain

(x0 − xP ) + (mx0 + k − yP )m = 0,

which is
(1 +m2)x0 + km− xP − yPm = 0.

Solving this we obtain the following value for x:

x0 =
xP + yPm− km

1 +m2
. (20.10)

The corresponding value for y is

y0 = mx0 + k

= m

(
xP + yPm− km

1 +m2

)
+ k

=
mxP + yPm

2 − km2

1 +m2
+
k(1 +m2)

1 +m2

=
mxP +m2yP + k

1 +m2

Thus

y0 =
mxP +m2yP + k

1 +m2
(20.11)

We have thus found the point

Q0(x0, y0)

on the line L that is closest to the point P .
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We can now work out the distance between P and Q0:

d(P,Q0)2 = (x0 − xP )2 + (y0 − yP )2

= [−m(y0 − yP )]2 + (y0 − yP )2 on using (20.8)

= m2(y0 − yP )2 + (y0 − yP )2

= (m2 + 1)(y0 − yP )2

(20.12)

We need to work oit y0 − yP from (20.11):

y0 − yP =
mxP +m2yP + k

1 +m2
− (1 +m2)yP

1 +m2

=
mxP +m2yP + k − yP −m2yP

1 +m2

=
mxP + k − yP

1 +m2

Using this in the formula (20.12) for d(P,Q0)2 we have:

d(P,Q0)2 = (m2 + 1)

(
mxP + k − yP

1 +m2

)2

=
(mxP + k − yP )2

1 +m2

Taking the square root produces at last the distance of P from the line L:

d(P,L) =
|mxP + k − yP |√

1 +m2
. (20.13)

Taking a concrete example, let us work out

the distance of the point (1, 2) from the line y = 5x− 2.

This works out to
|5 ∗ 1− 2 − 2|√

1 + 52
=

1√
26
.

The absolute value in the numerator erases a piece of information. In this
example,

5 ∗ 1− 2 > 2

and this means that the point (1, 2) lies below the line y = 5x− 2.
In fact,

mxP + k − yP
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measures how far ‘below’ (in the vertical y-direction) the line L the point P
lies. If α is the angle between L and the positive x-axis then

m = tanα

and so
1√

1 +m2
=

1√
1 + tan2 α

=
1√

sec2 α
= | cosα|.

Thus
|mxP + k − yP |√

1 +m2
= |(mxP + k − yP ) cosα|.

If you view this geometrically it is clear that this does indeed measure the
distance between P and the line L.

Now consider a different way of writing the equation of a line:

Ax+By + C = 0,

where at least one of A and B is not 0. Assume that B 6= 0 (if B were 0 then
the line would be ‘vertical’, parallel to the y-axis). Then we can rewrite the
equation as

y = −A
B
x+
−C
B
.

So, to switch back to our previous notation,

m = −A
B
, k =

−C
B
.

Then the distance between P (xP , yP ) and L is

|mxP + k − yP |√
1 +m2

=
| − A

B
xP − C

B
− yP |√

1 + A2

B2

Simplifying the algebra this produces the formula

d(P,L) =
|AxP +ByP + C|√

A2 +B2
. (20.14)

You can check that this formula works even when B is 0, for then the line
L has constant x value −C/A and the x-coordinate of P is xP , so that the
distance is

|xP − (−C/A)| = |AxP + C|
|A|

,

which matches (20.14) for B = 0.
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x

y

y = mx+ k

P (xP , yP )

P0(x0, y0)

Q(x, y)

d(P,Q) =
√

(x− xP )2 + (y − yP )2

Figure 20.1: Distance of a point P from points on a line.

20.4 Other geometric examples

A straight piece of wire of length L units is to be cut into two pieces, one
of which will be bent into a square and the other a circle. What is the
maximum and what is the minimum possible total area (enclosed by the
square and circle) that can be enclosed in this way?

Intuition suggest that the largest area would be obtained if we take the
entire wire and bend it into a circle. This intuition (where does it come
from?) is verified to be correct by the mathematical solution we work out.
It is not clear intuitively how to cut the wire to obtain the minimum wire.

Let x units be the length of the piece that is bent into a circle. Thus if
the radius of the circle is R then

2πR = x,

and so the area enclosed by the circle is

πR2 = π
( x

2π

)2

=
x2

4π
.
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The remaining piece is of length

L− x

and when this is bent to form a square, each side of the square has length

L− x
4

,

and its area is (
L− x

4

)2

.

Thus the total area enclosed is

A(x) =
1

4π
x2 +

1

16
(L− x)2. (20.15)

We have to find the maximum and minimum values of A(x), keeping in mind
that x cannot be negative or more than L:

x ∈ [0, L].

(Taking x = 0 means we just form a large square and no circle, and taking
x = L means we form a circle out of the full length of wire and no square at
all.)

The derivative of A is:

A′(x) =
1

4π
2x+

1

16
2(L− x) · (−1) =

x

2π
+
x− L

8
=

4x+ πx− πL
8π

,

which simplifies to

A′(x) =
(4 + π)x− πL

8π
.

Thus
the solution of A′(x) = 0 is x0 = π

π+4
L.

The remaining length L− x to be bent into a square is:

L− x0 = L− π

π + 4
L =

4

π + 4
L.

The total area enclosed is

A(x0) =
1

4π

(
π

π + 4
L

)2

+
1

16

(
4

π + 4
L

)2

(20.16)
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Simplifying this we have

A(x0) =
π2

4π(π + 4)2
L2 +

16

16(π + 4)2
L2

=
π

4(π + 4)2
L2 +

1

(π + 4)2
L2

=
π

4(π + 4)
L2 +

4

4(π + 4)2
L2

=
π + 4

4(π + 4)2
L2

=
1

4(π + 4)
L2

(20.17)

We compare this value

A(x0) =
L2

4π + 16

with the endpoint values obtained from (20.15) with x = 0 and x = L:

A(0) =
L2

16
and A(L) =

L2

4π
.

Among these values A(L) is the highest, having the smallest denominator
4π, and A(x0) is the least, having the largest denominator 4π + 16.

Thus the largest area is enclosed when x = L, which means we take the
entire length of wire and bend it into a circle.

Now consider another problem. A rectangle of sides L units by W units
has four little squares, each having side x units, cut out of the four corners;
the edges are now folded to form a box (with no cover). The height of the
box is x units, and the edges are L − 2x units and W − 2x units. What
should x be to maximize the volume of the box?

The volume V cubic units is given by

V (x) = x(L− 2x)(W − 2x) = xLW − 2(L+W )x2 + 4x3

The value of x is ≥ 0 but cannot be more than W/2 (we assume W is the
shorter edge, that is: W ≤ L). Thus,

x ∈ [0,W/2].
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The derivative V ′(x) is

V ′(x) = LW − 4(L+W )x+ 12x2

For this to be 0 we have

12x2 − 4(L+W )x+ LW = 0.

The solutions are

4(L+W )±
√

16(L+W )2 − 4 ∗ 12 ∗ LW
24

=
4(L+W )±

√
16[(L+W )2 − 3LW ]

24

which simplify to
(L+W )±

√
L2 +W 2 − LW
6

We need to check if these two values fall within the interval [0,W/2]. Since
L ≥ W the numerator for the + sign is

(L+W ) +
√
L2 +W 2 − LW = L+W +

√
L(L−W ) +W 2

≥ W +W +
√

0 +W 2

= 3W

which makes the ratio

(L+W ) +
√
L2 +W 2 − LW
6

≥ 3W

6
=
W

2
,

falling outside the allowed range, unless we have the extreme case L = W
for which the ratio is W/2. On the other hand, if we take the − sign, then
the numerator is

(L+W )−
√

(L−W )2 + LW

and the term being subtracted is larger than
√

(L−W )2 = L−W , and so

(L+W )−
√

(L−W )2 + LW ≤ (L+W )− (L−W ) = 2W,

and so then the ratio is

(L+W )−
√
L2 +W 2 − LW
6

≤ 2W

6
=
W

3
.
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Thus

x0 =
(L+W )−

√
L2 +W 2 − LW
6

is in the interior of [0,W/2]. Clearly this choice of x must produce the
maximum value of the volume, for the value of V (x) at the endpoints x = 0
and x = W/2 is 0.

Thus the maximum volume is

V (x0) = x0(L− 2x0)(W − 2x0)

After a long calculation this works out to

1

54

[
(L+W )(5LW − 2L2 − 2W 2) + 2(L2 +W 2 − LW )

√
L2 +W 2 − LW

]
.

If we start with a square, for which L = W , this simplifies to

2

27
L3,

with x0 being L/6.

Exercises on Maxima and Minima

1. Find the maximum and minimum values of x2 for x ∈ [−1, 2].

2. Find the maximum and minimum values of

x(6− x)(3− x)

for x ∈ [0, 2].

3. A wire of length 12 units is bent to form an isosceles triangle. What
should the lengths of the sides of the triangle be to make its area
maximum?

4. A piece of wire is bent into a rectangle of maximum area. Show that
this maximal area rectangle is a square.

5. A piece of wire of length L is cut into pieces of length x and L − x
(including the possibilty that x is 0 or L), and each piece is bent into a
circle. What is the value of x which would make the total area enclosed
by the pieces maximum, and what is the value of x which would make
this area minimum.
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6. Here are some practice problems on straight lines and distances:

(i) Work out the distance from (1, 2) to the line 3x = 4y + 5

(ii) Work out the distance from (2,−2) to the line 4x− 3y − 5 = 0.

(iii) Find the point P0 on the line L, with equation 3x + 4y − 7 = 0,
closest to the point (0, 3). What is the angle between P0P and
the line L?

(iv) Let P0 be the point on the line L, with equation 3x+ 4y−11 = 0,
closest to the point P (1, 3). What is the slope of the line PoP?

(v) Let P0 be the point on the line L, with equation 3x+ 4y−11 = 0,
closest to the point P (1, 3). Find the equation of the line through
P and P0.

7. Prove the inequality
x3

3
+
k3/2

3/2
≥ kx, (20.18)

for all x, k ∈ (0,∞). Explain when ≥ is =. [Hint: Show that, for any
fixed value k ∈ (0,∞), the maximum value of

Φ(x) = kx− x3

3
for x ∈ (0,∞)

is k3/2

3/2
. Note that Φ(0) = 0 and limx→∞Φ(x) = −∞; so you have to

find a point p ∈ (0,∞) where Φ′(p) is 0 and compare the value Φ(p)
with Φ(0) and choose the larger.]

8. Prove the inequality
x6 + 5k6/5 ≥ 6kx, (20.19)

for all x, k ∈ (0,∞). Now show that

x6 + 5y6 ≥ 6y5x,

for all x, y ∈ (0,∞).
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Chapter 21

Local Extrema and Derivatives

21.1 Local Maxima and Minima

Consider a function f on a set S ⊂ R. Suppose u ∈ S is such that the value
of f at u is maximum:

f(u) = sup
x∈S

f(x).

Assume that this point u acually lies in the interior of S:

u ∈ S0.

Then, in any neighborhood U of u, there are points of S to the right of u
that are in U and there are points of S to the left of d that are also in U .

Then for any x ∈ U to the right of u we have

f(x)− f(u)

x− u
≥ 0

because both numerator and denominator of the fraction on the left are ≥ 0.
On the other hand, for x ∈ U to the left of u we have

f(x)− f(u)

x− u
≤ 0

because the numerator is ≥ 0 but the denominator is < 0. Thus, on any
neighborhood U of u, the sup of the ratio f(x)−f(u)

x−u is ≥ 0 and its inf is ≤ 0:

inf
x∈U,x 6=u

f(x)− f(u)

x− u
≤ 0 ≤ sup

x∈U,x6=u

f(x)− f(u)

x− u
.
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But this just means that the line of slope 0, through the point P = (u, f(u))
on the graph of f , satisfies the condition (13.1) for quasi-tangents.

A very similar argument works for a point b where f is a minimum.
In fact these arguments easily establish:

Proposition 21.1.1 Suppose f is a function on a set S ⊂ R, and b ∈ S is
a point in the interior of S. Let U be a neighborhood of b contained in S and
suppose

f(b) ≤ f(x) for all x ∈ U .

If, moreover, f ′(b) exists then

f ′(b) = 0.

Suppose u ∈ S is such that there is a neighborhood U of u with U ⊂ S
and

f(u) ≥ f(x) for all x ∈ U .

If, moreover, f ′(u) exists then

f ′(u) = 0.

For a function f defined on a set S ⊂ R, a point b ∈ S is said to be a
local minimum if there is a neighborhood U of b on which the value of f at
b is ≤ all other values:

f(b) ≤ f(x) for all x ∈ U ∩ S.

A point u is said to be a local maximum of f if the value f(u) is ≥ all other
values over U :

f(u) ≥ f(x) for all x ∈ U ∩ S.

With this terminology, Proposition 21.1.1 says that if a function has a
local minimum or a local maximum in the interior of its domain of definition,
and if the graph has a tangent line at that point, then the this tangent line
is horizontal, that is, it has 0 slope.

Recalling the term ‘quasi-tangent’ we introduced back at the end of sec-
tion (13.1) we see a sharper form of the preceding proposition:

If f is a function, defined on a set S, that has a local minimum
or a local maximum at a point p in the interior of S, then the line
through p of zero slope is a quasi-tangent to the graph y = f(x)
at the point

(
p, f(p)

)
.
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Review Exercises

1. For the set

S = [−∞,−1) ∪ (1, 2] ∪ {6, 8} ∪ [9,∞]

write down

(i) an interior point

(ii) a limit point

(iii) a boundary point

(iv) an isolated point

(v) the interior S0 =

(vi) the boundary ∂S =

2. Answer and explain briefly:

(i) If 4 < supT is 4 an upper bound of T?

(ii) In (i), is there a point of T that is > 4?

(iii) If inf T < 3 is 3 a lower bound of T?

(iv) In (iii), is there a point of T that is < 3?

3. Answer the following concerning limits, with brief explanations:

(i) If limx→1 F (x) = 2 does it follow that F (1) = 2?

(ii) If g is continuous at 3 is g differentiable at 3?

(iii) If g is differentiable at 5 is g continuous at 5?

(iv) If h′(5) = 4 and h(5) = 8 then limx→5 h(x) =

(v) If H ′(2) = 5 and H(2) = 3 then limw→2
H(w)−3
w−2

=

(vi) If G′(5) = 1 and G(5) = 6 then limy→5
G(y)−6
y−5

=

(vii) limw→0
sinw
w

=

(viii) limw→π/3
sinw−sin(π/3)

w−π/3 =
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(ix) If G′(3) = 4 then

lim
h→0

G(3 + h)−G(3)

h
=

4. Work out the following derivatives:

(i) d
√
w4−2w2+4
dw

(ii)
d[(1+

√
y) tan y]

dy

(iii)
d
[
1+
√
y)

tan y

]
dy

(iv) d cotx
dx

(v)
d sin(cos(tan(

√
x)))

dx

5. Using the definition of the derivative, show that

d(1
√
x)

dx
= − 1

2x
√
x
.



Chapter 22

Mean Value Theorem

In this chapter we explore a very powerful result in calculus: the mean value
theorem. This result shows that for any differentiable function f , the slope
of a secant line PQ is actually equal to the slope of a suitable tangent line
to the graph y = f(x).

x

y

slope PQ = slope of tangent at C

y = 1
4
x4

P

Q

C

Figure 22.1: A tangent line parallel to a secant.

22.1 Rolle’s Theorem

The following is a version of Rolle’s theorem, which is a key step towards
proving the mean value theorem:

Theorem 22.1.1 Let f be a function, continuous on the interval [a, b], where
a, b ∈ R with a < b, and suppose

f(a) = f(b).
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Suppose also that the derivative f ′(x) exists for all x ∈ (a, b). Then there is
a point p on the graph of f over (a, b) where there is a tangent line of zero
slope:

f ′(p) = 0 for some p ∈ (a, b).

Proof. Since f is continuous we know that there is a point in [a, b] where it
reaches its maximum value and a point in [a, b] where it reaches its minimum
value.

Let us first see that at least one of these values must occur at a point p
in (a, b), the interior of the interval. If both the maximum and the minimum
of f were to occur at the end points a and b, then, since f(a) = f(b), the
function f must be constant, say with value K; picking any p ∈ (a, b) we
have f(p) = K, which is both the maximum and the minimum of f . Thus
in all cases there is a p ∈ (a, b) such that f attains either its maximum or its

minimum value at p. Then, by Proposition 21.1.1, f ′(p) = 0. QED
There is a small sharpening of Rolle’s theorem we could note, just to see

how proofs can be tweaked to sharpen results. Recall that if f is continuous
on [a, b] and attains either a maximum or a minimum value f(p) at p ∈
[a, b], then there is a quasi-tangent line at (p, f(p)) to the graph y = f(x)
that is flat. Thus, we could drop the requirement in Rolle’s theorem that
f is differentiable and conclude that there is a point p ∈ [a, b] where the
graphy = f(x) has a flat quasi-tangent line.

22.2 Mean Value Theorem

The following is the enormously useful Mean Value Theorem:

Theorem 22.2.1 Let f be a function, continuous on the interval [a, b], where
a, b ∈ R with a < b. Suppose also that the derivative f ′(x) exists for all
x ∈ (a, b). Then there is a point on the graph of f over (a, b) where there is
a tangent line that has slope equal to

f(b)− f(a)

b− a
.

Thus,

f ′(p) =
f(b)− f(a)

b− a
for some p ∈ (a, b). (22.1)
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Proof. Consider the secant line passing through the points A = (a, f(a)) and
B = (b, f(b)). The slope of this line is

M =
f(b)− f(a)

b− a
. (22.2)

Its equation is
y − f(a) = M(x− a).

Consider now how high f rises above this line:

H(x) = f(x)− [M(x− a) + f(a)] for all x ∈ [a, b]. (22.3)

x

y

y = f(x)

Equation of line AB is

y = M(x− a) + f(a)

A(a, f(a))

B(b, f(b))P
(
x, f(x)

)
H(x)

H(x) = f(x)− [M(x−a)+f(a)]

Figure 22.2: The height H of the graph of f above a secant AB.

This function is continuous, being the sum of two continuous functions.
Moreover,

H(a) = H(b) = 0.

Hence there is a point p ∈ (a, b) where the tangent line to the graph of H is
flat:

H ′(p) = 0.

From the expression for H(x) given in (22.3) we have

H ′(x) = f ′(x)−M.
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(This makes geometric sense: the slope of H is the slope of f minus the slope
of the line M(x− a) + f(a).) So the relation H ′(p) = 0 means

f ′(p)−M = 0,

which means f ′(p) = M . QED

22.3 Rolle’s theorem on R∗

The argument used to prove Rolle’s theorem (Theorem 22.1.1 ) extends di-
rectly to cover the case of functions defined on subsets of R∗:

Theorem 22.3.1 Let F : [a, b]→ R∗ be a continuous function, where a, b ∈
R∗ with a < b, with F (x) ∈ R for all x ∈ (a, b), and suppose

F (a) = F (b).

Suppose also that the derivative F ′(x) exists for all x ∈ (a, b). Then

F ′(p) = 0 for some p ∈ (a, b).

We will use this result in establishing one case of l’Hospital’s rule (Propo-
sition 28.2.2).



Chapter 23

The Sign of the Derivative

In this chapter we harness the power of the mean value theorem and a
very precise understanding of the notion of limit (as explored in Proposition
10.1.1) to study the relationship between the sign (positive/negative/zero)
of the derivative f ′ of a function and the nature of the function f , whether
it is increasing, decreasing or constant.

Recall that for a function f defined on a set S ⊂ R, and a point p ∈ S, if
U is a neighborhood of p then part of U might not be inside S. So to work
with values f(x) for x in the neighborhood U we must focus on x ∈ U ∩ S,
which would guarantee that x does lie in the domain S of f .

23.1 Positive derivative and increasing nature

Intuitively it is clear that a function is increasing whereever its slope is ≥ 0,
and it is decreasing wherever its slope is ≤ 0. In this section we make this
idea precise.

The simplest observation on slopes and derivatives is that if f is an in-
creasing function on an interval then its slope is ≥ 0:

Proposition 23.1.1 Let f be a function on a set S ⊂ R.

If f is increasing on S, that is if f(s) ≤ f(t) for all s, t ∈ S with s ≤ t,
then f ′(p) ≥ 0 for all p ∈ S where f ′(p) exists.

If f is decreasing on S, that is if f(s) ≥ f(t) for all s, t ∈ S with s ≤ t,
then f ′(p) ≤ 0 for all p ∈ S where f ′(p) exists.
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Proof. This follows directly from the definition of the derivative:

f ′(p) = lim
x→p

f(x)− f(p)

x− p
.

If f is increasing then f(x) ≥ f(p) when x > p (thus x − p > 0) in S and

f(x) ≤ f(p) when x < p (thus x − p < 0) in S. Hence the ratio f(x)−f(p)
x−p is

≥ 0, and so the limit f ′(p) is also ≥ 0.
If f is decreasing then

f(x)− f(p)

x− p
≤ 0

both when x > p and when x < p, with x ∈ S. Hence in this case f ′(p) ≤ 0.

QED
The following is a much sharper result going in the other direction:

Proposition 23.1.2 Let f be a function on a set S ⊂ R, and p a point in
S where f ′(p) exists and is positive, that is

f ′(p) > 0.

Then there is a neighborhood U of p such that the f(x) > f(p) for x ∈ U ∩S
to the right of p and f(x) < f(p) for x ∈ U ∩ S to the left of p:

f(x) > f(p) for all x ∈ U ∩ S for which x > p

f(x) < f(p) for all x ∈ U ∩ S for which x < p
(23.1)

Thus, roughly put, if the slope of y = f(x) is > 0 at a point p then just
to the right of p the values of f are higher than f(p) and just to the left of
p the values of f are lower than f(p).
Proof. Recall the definition of f ′(p):

f ′(p) = lim
x→p

f(x)− f(p)

x− p
.

If this is > 0 then the ratio
f(x)− f(p)

x− p
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x

y

(
p, f(p)

)
p

U
( )

y = f(x)

Figure 23.1: Positive slope and increasing function.

is also > 0 when x is near p, but 6= p (see Proposition 10.1.1 for this). Put
more precisely, this means that there is a neighborhood U of p such that

f(x)−f(p)
x−p > 0 for all x ∈ U ∩ S with x 6= p.

If we take an x ∈ U ∩ S to the right of p, we have x− p > 0 and so the

f(x)− f(p) = (x− p)
[
f(x)− f(p)

x− p

]
> 0.

This means f(x) > f(p) for such values of x.
On the other hand, if x ∈ U ∩S is to the left of p, we have x− p < 0 and

so the

f(x)− f(p) = (x− p)
[
f(x)− f(p)

x− p

]
< 0.

This means f(x) < f(p) for such values of x. QED
Using this we can step up to another result going in the converse direction

to Proposition 23.1.1:

Proposition 23.1.3 Suppose f is a continuous function defined on an in-
terval U , and suppose f ′(p) exists and is positive (this means > 0) for all p
in the interior of U . Then f is strictly increasing on U in the sense that:
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f(x1) < f(x2) for all x1, x2 ∈ U with x1 < x2.

If f ′ is assumed to be ≥ 0 on U then the conclusion is f(x1) ≤ f(x2).

Proof. Consider x1, x2 ∈ U with x1 < x2. By the mean value theorem there
is a point c ∈ (x1, x2) where the derivative f ′(c) is given by

f ′(c) =
f(x2)− f(x1)

x2 − x1

.

We are given that f ′(c) > 0 and we know that the denominator x2 − x1 is
positive; hence so is the numerator:

f(x2)− f(x1) = (x2 − x1)
f(x2)− f(x1)

x2 − x1

= (x2 − x1)f ′(c) > 0,

which shows that

f(x2) > f(x1).

If we assume only that f ′ ≥ 0 then the same argument shows that f(x2) ≥
f(x1). QED

Here is a slight but useful sharpening of the preceding result:

Proposition 23.1.4 Suppose f is a continuous function defined on an in-
terval U , and suppose f ′(p) exists and is ≥ 0 for all p in the interior of U
and f ′(p) is 0 at most at finitely many p ∈ U . Then f is strictly increasing
on U . If f ′ ≤ 0 in the interior of U and f ′(p) is 0 at finitely many points
p ∈ U then f is strictly decreasing on U .

Proof. Assume f ′ ≥ 0 in the interior of U and f ′ takes the value 0 at finitely
many points. By Proposition 23.1.3 f is an increasing function on U in the
sense that f(a) ≤ f(b) for all a, b ∈ U with a ≤ b. Hence if f(s) = f(t) for
some s, t ∈ U with s < t then f would be constant on the interval [s, t] which
would imply that f ′ is 0 on this entire interval, contradicting the assumption
on f ′. This proves the result for f ′ ≥ 0. For f ′ ≤ 0 the argument is exactly
similar (or observe that it follows from the case f ′ ≥ 0 by flipping the sign

of f to −f). QED



DRAFT Calculus Notes 11/17/2011 179

23.2 Negative derivative and decreasing na-

ture

The results of the preceding section can be run analogously for functions
with downward pointing slope.

Proposition 23.2.1 Let f be a function on a set S ⊂ R, and p a point in
S where f ′(p) exists and is negative, that is

f ′(p) < 0.

Then there is a neighborhood U of p such that the f(x) < f(p) for x ∈ U ∩S
to the right of p and f(x) > f(p) for x ∈ U ∩ S to the left of p:

f(x) < f(p) for all x ∈ U ∩ S for which x > p

f(x) > f(p) for all x ∈ U ∩ S for which x < p
(23.2)

If f slopes downward along an interval then it is decreasing:

Proposition 23.2.2 If f is defined on an interval [a, b], where a, b ∈ R with
a < b, and if f ′(p) exists and is negaive, that is < 0, for all p ∈ [a, b] then f
is strictly decreasing on [a, b] in the sense that:

f(x1) > f(x2) for all x1, x2 ∈ [a, b] with x1 < x2.

If f ′ is assumed to be ≤ 0 on [a, b] then the conclusion is f(x1) ≥ f(x2).

23.3 Zero slope and constant functions

Clearly a constant function has zero slope: the derivative of a constant func-
tion is 0 wherever defined. One can run this also in the converse direction,
but with just a bit of care.

Consider a function G that is defined on a domain consisting of two
separated intervals, on each of which it is constant:

G(x) =

{
1 if x ∈ (0, 1);

4 if x ∈ (8, 9).
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Then clearly
G′(p) = 0 for all p in the domain of G,

and yet G is, of course, not constant. On the other hand it is also clear that
G really is constant, separately on each interval on which it is defined.

Proposition 23.3.1 Suppose f is a function on an interval [a, b], where
a, b ∈ R with a < b, and f ′(p) = 0 for all p ∈ [a, b]. Then f is constant on
[a, b]. If f is defined on an open interval (a, b) and f ′ is 0 on (a, b) then f is
constant on (a, b).

One can tinker with this as usual. It is not necessary (for the case of [a, b]) to
assume that f ′(a) and f ′(b) to exist; it suffices to assume that f is continuous
at a and at b.
Proof. Consider any x1, x2 ∈ [a, b] with x1 < x2. Then by the mean value
theorem

f(x2)− f(x1)

x2 − x1

= f ′(c),

for some c ∈ (x1, x2). So if f ′ is 0 everywhere it follows that

f(x2)− f(x1)

x2 − x1

= 0,

and so
f(x2)− f(x1) = 0,

which means f(x1) = f(x2). Thus the values of f at any two different points

are equal; that is, f is constant. QED



Chapter 24

Differentiating Inverse
Functions

Often an equation of the form

y = f(x)

can be solved for x:
x = f−1(y),

and f−1 is called an inverse to the function f . If f is differentiable then
formal common sense suggests that the derivative of the inverse function
should be

dx

dy
=

1
dy
dx

=
1

f ′(x)
.

For example, for
y = x2

we have an inverse function given by the square root function

x =
√
y

and its derivative should be

dx

dy
=

1
dy
dx

=
1

2x
=

1

2
√
y
,

which certainly is the derivative of
√
y with respect to y. Of course, we need

to avoid the points where dy/dx is 0 (or undefined).
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Note that we have been referring to ‘an’ inverse function. For y = x2

another choice of inverse is given by the other ‘branch’ of square root:

x = −√y.

Things could be really made messy by choosing an inverse function that
switches wildly back and forth between the branches

√
y and −√y. This

just means that we need to exercise some care about choosing a specific
well-behaved branch as an inverse functions.

24.1 Inverses and Derivatives

Suppose f is a function on an interval U such that f ′(x) exists for every
x ∈ U and is positive, that is f ′(x) > 0 (alternatively we could assume that
f ′ < 0 everywhere on U). Let V denote the range of f :

V = f(U) = {f(x) : x ∈ U}.

Since f ′ > 0 on U , f is a strictly increasing function and so it has a unique
inverse function

f−1 : V → R,

specified by the requirement that

f
(
f−1(y)

)
= y for all y ∈ V .

Alternatively,

f−1
(
f(x)

)
= x for all x ∈ U .

Proposition 24.1.1 Suppose f is a function defined on an interval U , such
that f ′(x) exists and is ≥ 0 for all x ∈ U , being equal to 0 at most at finitely
many points. Then

(
f−1
)′

(y) exists for all y ∈ V , the range of f , and

(
f−1
)′

(y) =
1

f ′(x)
(24.1)

where x = f−1(y); in (26.39) we take the right side 1/f ′(x) to be 0 in case
f ′(x) is ∞, and ∞ if f ′(x) is 0.
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Note that, as consequence, if f is differentiable (finite derivative) and has
derivative either positive on all of U or negative on all of U then f−1 is also
differentiable. As usual, there is a corresponding result if f ′ is ≤ 0, being
< 0 at all but finitely many points.
Proof. Suppose f ′ ≥ 0 on U and is actually > 0 except possibly at finitely
many points. Then by Proposition 23.1.4, f is strictly increasing.

By Proposition 11.3.2 the range V of f is an interval and the inverse
function f−1 is defined on V . Let p ∈ U and q = f(p) ∈ V . Then

(f−1)′(q) = lim
y→q

f−1(y)− f−1(q)

y − q
. (24.2)

Writing x for f−1(y) and p for f−1(q) we see that the difference ratio on the
right here is

x− p
f(x)− f(p)

.

Let us denote this by D(x):

D(x) =
x− p

f(x)− f(p)

for x ∈ U and x 6= p (note that then f(x) 6= f(p), being either > or < than
f(p) depending on whether x > p or x < p). Thus (24.2) reads:

(f−1)′(q) = lim
y→q

D
(
f−1(y)

)
. (24.3)

The definition of f ′(p) implies that

lim
x→p

D(x) = lim
x→p

1
f(x)−f(p)

x−p

=
1

f ′(p)
, (24.4)

this being taken to be 0 if f ′(p) =∞ and to be∞ if f ′(p) is 0 (these extreme
cases require some care).

Now since f−1 is continuous (by Proposition 11.3.2) we have:

f−1(y)→ p as y → q,

and we also know that f−1(y) 6= p when y 6= p. Then by Proposition 7.5.1
we have

lim
y→q

D
(
f−1(y)

)
= lim

x→p
D(x). (24.5)
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Combining this with the expression for (f−1)′(q) in (24.3) and the limit value
in (24.4) we have:

(f−1)′(q) =
1

f ′(p)
. (24.6)

This completes the proof. QED



Chapter 25

Analyzing local extrema with
higher derivatives

25.1 Local extrema and slope behavior

Suppose a function f is defined on a neighborhood of a point p ∈ R and f has
a local minimum or maximum at p. As we have seen, if f ′(p) exists it must
be 0. In this secton we explore ways to tell whether p is a local minimum or
a local maximum by observing the behavior of the slope f ′.

The basic idea is simple: if a continuous graph is sloping downward just
to the left of a point p and sloping upward just to the right then it must have
a local minimum at p. This is formalized in the following result.

Proposition 25.1.1 Suppose f is defined and continuous on a neighborhood
U of p ∈ R, and the derivative f ′ is ≥ 0 to the right of p and ≤ 0 to the
left of p; more precisely, suppose f is differentiable on U except possibly at
p, and f ′(x) ≥ 0 for x ∈ U with x > p and f ′(x) ≤ 0 for x ∈ U with x < p.

x

y

y = f(x)

p

U
( )

f ′ < 0

f ′ > 0

185
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Then p is a local minimum for f .

As an example, consider the function

g(x) = x4 − 4x3 + 2

x

y

y = x4 − 4x3 + 2

(3, 0)

(0, 0)

Its derivative is

g′(x) = 4x3 − 12x2 = 4x2(x− 3),

and this is 0 at x = 0 and at x = 3:

g′(0) = 0 and g′(3) = 0.

Let us look at the point x = 3. We see that

4x2(x− 3) < 0 if x < 3;

> 0 if x > 3.

Then Proposition 25.1.1 implies that x = 3 gives a local minimum for g.
What about the point x = 0? Observe that on the neighborhood (−3, 3)

of 0 we have
4x2(x− 3) ≤ 0 for all x ∈ (−3, 3).

Thus g(x) continues to decrease in value as x passes from the left of 0 to the
right of 0, and 0 is not a local maximum or minimum.
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Proof of Proposition 25.1.1 . Consider any x ∈ U to the right of p, that is
x > p; the mean value theorem (Theorem 22.2.1) says that

f(x)− f(p) = (x− p)f ′(c) for some c ∈ (p, x).

If f ′ is ≥ 0 on U to the right of p then f ′(c) ≥ 0, and so we see that

f(x)− f(p) ≥ 0 for x ∈ U , with x > p.

Thus

f(x) ≥ f(p) for x ∈ U , with x > p.

On the other hand, taking x < p but inside U we have, again by the mean
value theorem,

f(x)− f(p) = (x− p)f ′(c) for some c ∈ (x, p),

but observe now that x− p < 0 and f ′(c) is given to be ≥ 0 (for c is to the
left of p); hence

f(x)− f(p) ≥ 0 for x ∈ U , with x < p.

Thus,

f(x) ≥ f(p) for x ∈ U , with x < p.

We have shown that f(x) is ≥ f(p) for all x ∈ U , both those to the left of
p and those to the right of p. This means that f has a local minimum at p.
QED

By a closely similar argument we obtain the analogous result for local
maxima:

Proposition 25.1.2 Suppose f is defined and continuous on a neighborhood
U of p ∈ R, and the derivative f ′ is ≤ 0 to the right of p and ≥ 0 to the
left of p; more precisely, suppose f is differentiable on U except possibly at
p, and f ′(x) ≤ 0 for x ∈ U with x > p and f ′(x) ≥ 0 for x ∈ U with x < p.
Then p is a local maximum for f .
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25.2 The second derivative test

There is often a faster way to check whether a point p where f ′(p) = 0
is a local minimum of maximum: this is by simply computing the second
derivative f ′′(p). If this is positive we have a local minimum at p, while if it
is negative then we have a local maximum at p.

For example,
y = sin(x2)

has derivative
d sin(x2)

dx
= 2x cos(x2),

which is 0 when x = 0, and second derivative

d2 sin(x2)

dx2
= 2 cos(x2)− 4x2 sin(x2)

whose value at x = 0 is 2; then, without even knowing anything about the
graph, we can say that sinx2 has a local minimum at x = 0. (You should,
however, see that since sin θ ' θ near θ = 0, the graph y = sin(x2) looks
about like that of y = x2, near x = 0, and since this clearly has a local
minimum at x = 0, it is a good guess that sin(x2) has a local minimum at
x = 0.)

Here is a formal statement:

Proposition 25.2.1 Let f be a function defined and differentiable on a
neighborhood of p ∈ R. Assume also that the second derivative f ′′(p) ex-
ists. If

f ′(p) = 0 and f ′′(p) > 0

then f has a local minimum at p. If

f ′(p) = 0 and f ′′(p) < 0

then f has a local maximum at p.

For the proof take a look back first at Propositions 23.1.2 and ??.
Proof. We are given that f is differentiable on the neighborhood W of p.
Thus the derivative f ′(x) exists and is finite at all x ∈ W . Moreover, we are
also given that f ′ itself has a derivative (f ′)′(p) at the point p.



DRAFT Calculus Notes 11/17/2011 189

Suppose f ′′(p) > 0. Thus, the derivative of f ′ at p is > 0. Then by
Proposition 23.1.2, the value f ′(x) for x immediately to the left of p is less
than the value f ′(p), whereas the value f ′(x) for x immediately to the right
of p is greater than the value f ′(p). More precisely, there is a neighborhood
U of p such that

f ′(x) > f ′(p) for x > p and x ∈ U ;

< f ′(p) for x < p and x ∈ U .

Since we are given that f ′(p) is 0 this means

f ′(x) > 0) for x > p and x ∈ U ;

< 0 for x < p and x ∈ U .

Then by Proposition 25.1.1, f has a local minimum at p.
The argument for f ′′(p) < 0 is very similar, using Proposition ?? to see

first that f ′ is positive to the left of p and negative to the right of p and
concluding then that p is a loca maximum for f . QED

There are functions for which both first and second derivatives are 0
at the same point, and then we cannot draw any conclusions about local
maximum/minimum at that point. For example,

y = x4

is ‘very flat’ at x = 0 since both its first derivative, which is 4x3, and its
second derivative 12x3 are 0 at x = 0. The point x = 0 is in fact a local
minimum for x4 but we cannot see this simply using the second derivative
test.

As another example of what can go wrong, consider

g(x) = x4 − 4x3 + 2

The derivative is

g′(x) = 4x3 − 12x2 = 4x2(x− 3)

and the second derivative is

g′′(x) = 12x2 − 24x = 12x(x− 2).
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Thus
g′(0) = 0, and g′(3) = 0

and
g′′(0) = 0, and g′′(3) = 36 > 0.

Thus x = 3 gives a local minimum, but we cannot draw any conclusions
about x = 0 from the second derivative test.



Chapter 26

Exp and Log

The exponential function is one of the most useful functions in mathematics,
and is expressed through the amazing formula[

1 + 1 +
1

2!
+

1

3!
+ · · ·

]x
= 1 + x+

x2

2!
+
x3

3!
+ · · · . (26.1)

Its inverse function is the natural logarithm log. In this chapter we study
the basic properties of these two functions.

The history of the discovery/understanding of these two functions is an
entertaining example of how mathematical concepts develop trough unex-
pected twists and turns and near-misses [1, 2, 4]. Our approach is not histor-
ical; we first summarize the essential facts about ex and log(x) that explain
how to work with these functions, and then we give a logical development of
the theory. This approach is fast but gives little insight on how or why these
ideas were developed historically.

26.1 Exp summarized

The function exp is defined on R by

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·

for all x ∈ R. It is a fact that this is a real number (finite) for all x ∈ R.

The number exp(1) is denoted e:

191
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e = 1 + 1 +
1

2!
+

1

3!
+ ' 2.718281 . . . (26.2)

The importance of e lies in the amazing identity

exp(x) = ex,

which is another way of writing (26.1). What exactly it means to raise e to
the power x, which is a real number, will be explored more carefully later.

The value of exp at 0 is clearly equal to 1:

exp(0) = 1.

Moreover, the derivative of exp is again exp:

exp′ = exp, (26.3)

which can also be expressed as

dex

dx
= ex. (26.4)

This property along with the value at 0 uniquely characterizes the function
exp: any function on R whose derivative is itself and whose value at 0 is 1 is
the exponential function.

Figure 26.1 shows the graph of y = ex.
The graph of the exponential function shows rapid increase as x → ∞

and rapid decay to 0 as x→ −∞:

lim
x→∞

ex =∞

lim
x→−∞

ex = 0.
(26.5)

Among the early studies of the exponential function is its use in describing
the growth of money under compound interest. This approach leads to the
following limit formulas:

ex = lim
n→∞

(
1 +

1

n

)nx
= lim

n→∞

(
1 +

x

n

)n
. (26.6)
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x

y
y = ex

Figure 26.1: Graph of the exponential function.

26.2 Log summarized

The natural logarithm is the inverse function of exp: thus log(A) is the real
number with the property that

exp (log(A)) = A,

or, equivalently,
elogA = A. (26.7)

It is defined for all A > 0.
For example, since e0 = 1 we have

log 1 = 0.

Since e1 = 1 we have
log 1 = e.

The notation ln is also used to denote the logarithm.
An alternative way to state the fact that log is inverse to the function

exp is
log ex = x for all x ∈ R. (26.8)

The basic algebraic properties of log are:

log(AB) = log(A) + log(B)

log(A/B) = log(A)− log(B)

log(Ak) = k log(A),

(26.9)
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x

y

A

B = log(A)

eB = A is equivalent to B = logA

y = ex

Figure 26.2: log(A) read off from the graph of y = ex.

for all A,B > 0 and k ∈ R. These properties made log enormously useful in
carrying out complex calculations involving multiplication and division. In
fact log (up to a scaling) was studied and used well before the exponential
function was identified.

The graph of log is the graph of Exp viewed from one side (thus, with x
and y axes interchanged). We have the following limits of interest:

lim
x→∞

log(x) =∞

lim
x→−∞

log(x) = 0.
(26.10)

The derivative of log is the reciprocal:

d log(x)

dx
=

1

x
(26.11)

for x > 0.

Figure 26.3 shows the graph of log:

x

y y = log(x)

Figure 26.3: The graph of log.
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Here are a couple of useful values of log:

log 1 = 0, log(e) = 1. (26.12)

The function log is strictly increasing, and so

log(x) < 0 if x < 1;

log(x) > 0 if x > 1.
(26.13)

26.3 Real Powers

For any real number y we have the positive integer powers

y1 = 1, y2 = y · y, y3 = y2 · y, . . . , yn+1 = yn · y.

The 0-th power is
y0 = 1.

Negative powers are given by reciprocals

y−n =
1

yn
,

for any positive integer n. Of course, this makes sense only for y 6= 0.
Next we have rational powers. For example,

y1/2 =
√
y

is defined to be the unique real number ≥ 0 whose square is y:

(y1/2)2 = y.

Thus y1/2 is defined only for y ≥ 0 (for otherwise we couldn’t square some-
thing to end up with y.)

More generally, for any positive real number A > 0 and integers p and q,
with q 6= 0, the power

Ap/q

is defined to be the unique positive real number whose q-th power is Ap:

(Aq)p/q = Ap.
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Thus, we have a definition for
Ar

for all positive real A and all rational r. These definitions are designed to
ensure that the following convenient algebra holds:

Ar+s = ArAs

(Ar)s = Ars

(AB)r = ArBr

(26.14)

for all positive real A,B and rationals r and s.
Moving on to real powers, it is natural to define

Ax = lim
r→x,q∈Q

Ar. (26.15)

That this exists for all positive real A and x ∈ R is intuitively clear but not
simple to prove. Perhaps the shortest way to see that Ax exists is by using
log: for rational r we have

Ar = (elog(A))
r

= e(log(A))r = er log(A) = exp (r log(A)) .

Since the function exp is continuous (it is, in fact, differentiable), we can take
then limit r → x, for any real number x, to obtain:

Ax = exp (x log(A)) . (26.16)

Taking A = e confirms the expected result

ex = exp(x) for all x ∈ R.

We can also verify the algebraic relations:

Ax+y = AxAy

(Ax)y = Axy

(AB)x = AxBx,

(26.17)

for all A,B, x, y ∈ R with A,B > 0.
Using the derivative of the exponential function we obtain immediately

that
dAx

dx
= ex logA · log(A). (26.18)

Note that on the right we have ex logA which is, in fact, Ax. Thus,

dAx

dx
= Ax log(A).
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26.4 Example Calculations

To see how to work with derivatives of log and exp we work out a few exam-
ples.

We have already observed in (26.18) that

dAx

dx
= Ax log(A), (26.19)

for any positive real constant A.
Thus, for example,

d2(2x)

dx
= 2(2x) log(2) · d2x

dx
(by the chain rule)

= 2(2x) log(2) · 2x log(2)

= 22x+x(log 2)2.

Next consider the derivative of the function xx. To work this out we
rewrite x as elog(x):

xx =
(
elog(x)

)x
= ex log(x).

Now we can differentiate this:

dxx

dx
=
dex log(x)

dx

= ex log(x)dx log(x)

dx
(by the chain rule)

= ex log(x)

[
1 · log(x) + x · 1

x

]
= xx [log x+ 1] (recognizing ex log(x) as xx).

Note that
1 + log(x) = log e+ log(x) = log(ex).

Similarly,

dx1/x

dx
= x1/x

[
1− log x

x2

]
. (26.20)

Observe that this is > 0 when x < e and is < 0 when x > e. This means that
x1/x is increasing for x < e and decreasing for x < 0. So x1/x is maximum at
e:

max
x>0

x1/x = e1/e.
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26.5 Proofs for Exp and Log

To really develop the theory and results for exp and log we should start with
the definition of exp(x) as

exp(x) = 1 + x+
x2

2!
+
x3

3!
+ · · ·

However, we have not yet developed enough working tools for such power
series, and so we will follow a modest strategy here. We assume that there
exists a function exp defined on R that is differentiable and satisfies the
following conditions:

exp′ = exp

exp(0) = 1.
(26.21)

We will prove that there can be at most one such function and then prove
the crucial relation

exp(x) = ex, where e = exp(1).

Observe by the chain rule that

d exp(Kx)

dx
= exp(Kx) ·K = K exp(Kx),

for any K ∈ R. In particular,

d exp(−x)

dx
= − exp(−x).

Proposition 26.5.1 For any x ∈ R the value exp(x) is not 0, and, more-
over,

exp(x) exp(−x) = 1. (26.22)

Note that this says

exp(−x) =
1

exp(x)
. (26.23)

Proof. First we take the derivative of exp(x) exp(−x) and show that it is 0:

d exp(x) exp(−x)

dx
=
d exp(x)

dx
exp(−x) + exp(x)

d exp(−x)

dx
= exp(x) exp(−x)− exp(x) exp(−x)

= 0.
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Thus exp(x) exp(−x) is constant, and so

exp(x) exp(−x) = exp(0) exp(−0) = 1 · 1 = 1,

for all x ∈ R. This proves (26.22) and from this relation it is clear that

exp(x) 6= 0. QED
The stragegy used in the proof above, showing that the derivative of a

function is 0 and then concluding that its value is constant, equal to the
value at x = 0, will be used several times.

The following result shows that the function exp is uniquely specified by
the condition that exp′ = exp and the ‘initial’ value exp(0) = 1:

Proposition 26.5.2 Suppose F is a differentiable function on R whose deriva-
tive is equal to itself:

F ′ = F.

Then F is a constant multiples of exp:

F (x) = F (0) exp(x) for all x ∈ R.

Proof. Consider the function F (x)/ exp(x), which is defined for all x ∈ R
since the denominator exp(x) is never 0 (Proposition 26.5.1). Taking the
derivative we have

d F (x)
exp(x)

dx
=

exp(x)F ′(x)− F (x) exp′(x)

(exp(x))2 (by the quotient rule)

=
exp(x)F (x)− F (x) exp(x)

(exp(x))2

= 0.

Thus, F (x)/ exp(x) is constant, and so

F (x)

exp(x)
=

F (0)

exp(0)
=
F (0)

1
= F (0),

for all x ∈ R. Hence
F (x) = F (0) exp(x)

for all x ∈ R. QED
Next we can prove a key algebraic property for exp:
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Proposition 26.5.3 For every a, b ∈ R we have

exp(a+ b) = exp(a) exp(b). (26.24)

Proof. Consider any a ∈ R and let F be the function

F (x) = exp(a+ x) for all x ∈ R.

Then
F ′(x) = exp′(a+ x) · 1 = exp(a+ x) = F (x).

Then by Proposition 26.5.2 we conclude that

F (x) = F (0) exp(x) for all x ∈ R.

Observing that
F (0) = exp(a),

we conclude that

F (x) = exp(a) exp(x) for all x ∈ R.

Recalling that F (x) is exp(a+ x) we are done. QED

It is useful to observe that this stage that exp(x) is strictly positive:

Proposition 26.5.4 The function exp assumes only positive values:

exp(x) > 0 for all x ∈ R. (26.25)

Proof. This follows from writing x as x/2 + x/2 and using the previous
Proposition:

exp(x) = exp
(x

2
+
x

2

)
= exp(x/2) exp(x/2) = [exp(x/2)]2 .

This, being a square, is ≥ 0. Moreover, we know from Proposition 26.5.1
that exp(x/2) is not 0. Hence exp(x) is actually > 0. QED

From the exponential multiplicative property in Proposition 26.5.3 we
have

exp(2a) = exp(a+ a) = [exp(a)]2

and

exp(3a) = exp(2a+ a) = exp(2a) exp(a) = [exp(a)]2 exp(a) = [exp(a)]3.
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This line if reasoning implies that

exp(Na) = [exp(a)]N (26.26)

for all a ∈ R and N ∈ {1, 2, 3, . . .}. Next, for such a and N we have

exp(−Na) =
1

exp(Na)
(by (26.23))

=
1

[exp(a)]N

= [exp(a)]−N .

Thus we have

exp(na) = [exp(a)]n (26.27)

for a ∈ R and all integers n ∈ Z (you can check the case n = 0 directly: both
sides are 1 in that case).

To proceed to rational powers first consider a simple case exp
(

1
2
a
)
; this

is a positive real number whose square is[
exp

(
1

2
a

)]2

= exp

(
2

1

2
a

)
= exp(a).

Hence exp(1
2
a) is the positive square-root of exp(a):

exp

(
1

2
a

)
= [exp(a)]1/2 .

Proceeding on to a general rational number

r =
p

q
where p, q ∈ Z and q 6= 0,

we have

[exp(ra)]q = exp(qra) = exp(pa) = [exp(a)]p ,

and so exp(ra) is a positive real number whose q-th power is [exp(a)]p. Then,
by defininition of (·)p/q, we have

exp(ra) = [exp(a)]p/q .
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Thus,

exp(ra) = [exp(a)]r (26.28)

for all a ∈ R and all r ∈ Q.
Finally, we can proceed to an arbitary real power. Consider any a, x ∈ R.

The definition of the x-th power is that

[exp(a)]x = lim
r→x,r∈Q

[exp(a)]r .

But we know that for rational r we have

[exp(a)]r = exp(ra),

and so, since the differentiable function exp is continuous, we have

lim
r→x,r∈Q

[exp(a)]r = exp(xa).

Putting everything together we have:

Proposition 26.5.5 For any real numbers a and x we have

exp(ax) = [exp(a)]x . (26.29)

Now we specialize this to a = 1 to obtain the crucial formula:

exp(x) = ex for all x ∈ R, (26.30)

where e is the value of exp at 1:

e
def
= exp(1). (26.31)

The derivative of exp is exp, by assumption in our approach, and this can
now be displayed as

dex

dx
= ex.

Proposition 26.5.6 The exponential function is strictly increasing:

ea < eb for all a, b ∈ R with a < b. (26.32)
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x

y

y = 1 + x

y = ex

Figure 26.4: The inequality ex ≥ 1 + x in terms of the tangent at (0, 1).

Proof. The derivative of exp is exp, and this is always positive. Hence exp is
strictly increasing. QED

Taking one of the numbers a and b to be 0 and using e−0 = 1 we conclude
that

ex > 1 if x > 0;

ex < 1 if x < 0.
(26.33)

Proposition 26.5.7 The function exp satisfies

exp(x) ≥ 1 + x for all x ∈ R, (26.34)

with = holding only when x = 0.

A geometric way of understanding this inequality is that the graph of
y = ex lies above the tangent line y = x+ 1 at (0, 1) (see Figure 26.4.)
Proof. First observe that

d (ex − (1 + x))

dx
= ex − 1.

This is positive when x > 0 and negative when x < 0. Thus, ex − (1 + x)
attains its minmum value when x = 0:

ex − (1 + x) > e0 − (1 + 0) = 1− 1 = 0 for all x > 0 and all x < 0.

This proves the inequality (26.34). QED

One consequence of the inequality (26.34) is the exp(x) goes to ∞ when
x→∞:

lim
x→∞

ex =∞. (26.35)
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Working with e−w = 1/ew we then see that

lim
x→−∞

ex = 0. (26.36)

The intermediate value theorem implies that the function exp has an
inverse defined on all positive real numbers; this function is log:

log = exp−1 : (0,∞)→ R, (26.37)

satisfying

exp (log(A)) = A for all A ∈ (0,∞);

log (exp(B)) = B for all B ∈ R.
(26.38)

If a function f , defined on an open interval U , has an inverse f−1, and if
f is differentiable at p ∈ U with f ′(p) 6= 0 then the derivative of the inverse
function is given by

(f−1)′(q) =
1

f ′(p)
, (26.39)

where q = f(p), which means p = f−1(q). Applying this to the exponential
function and its inverse, log, we have first

log′ q =
1

ep
=

1

q
,

for all p ∈ R and q = ep. Restating in different notation this says:

d log x

dx
=

1

x
for x ∈ (0,∞). (26.40)



Chapter 27

Convexity

Convexity is a powerful notion. It is useful in establishing results about
maxima and minima, and useful in many different applications. This chapter
gives an initial glimpse of this deep and varied subject.

27.1 Convex and concave functions

A function f is said to be convex on an interval U if for any points a, b ∈ U ,
the graph y = f(x), over the interval x ∈ [a, b], below the secant line segment
joining the point

(
a, f(a)

)
with

(
b, f(b)

)
.

x

y
y = f(x)

A

a

B
(
b, f(b)

)

b

Figure 27.1: Convex function: the graph lies below secant segments

By ‘below’ we allow the possibility that the graph and the secant segment

205
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might touch or run along each other. For example, a function whose graph
is a straight line is convex.

A function f is strictly convex on an interval U if the graph of f between
any two points in U lies strictly below the corresponding secant segment.

A function f is concave over an interval U if the graph of f between any
a, b ∈ U lies above the secant segment joining A

(
A, f(a)

)
and B

(
b, f(b)

)
. It

is strictly concave of the graph lies strictly above all secant segments.
Thus, a function whose graph is a straight line is both convex and concave.

x

y

A

B

Figure 27.2: Concave function: the graph lies above secant segments

Note that we only consider the notions of convexity and concavity of
functions defined on intervals.

27.2 Convexity and slope

Consider a function f on an interval U . Let us take three points a, p, b ∈ U
with

a < p < b

and examine the behavior of the secants over [a, p] and over [p, b].
Let A be the point on the graph of y = f(x) with x-coordinate a; thus A

is
(
a, f(a)

)
. Next let B be (b, f(b)) and P the point (p, f(p)). Let Q be the

point on the secant segment AB whose x-ccordinate is p. Thus Q is of the
form

(p, L(p))

where L(p) is the y-cordinate of Q.
The condition that the point P (p, f(p)) lie below the segment AB means

that P is below Q:
f(p) ≤ L(p).
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This means that the slope of AP is ≤ the slope of AQ. Now the slope of AQ
is the same as the slope of AB. Thus the condition that P is below AB is
equivalent to

slope AP ≤ slope AB.

Similarly, the same condition is also equivalent to

slope AB ≤ slope PB.

Thus, convexity of f is equivalent to the relations

slope AP ≤ slope AB ≤ slope PB,

for all a, p, b ∈ U , with p ∈ [a, b].

x

y

y = f(x)

A

a

P

Q

p

B
(
b, f(b)

)

b

slope AP ≤ slope AB ≤ slope PB

Figure 27.3: Convex function: secant slopes increase

Just the condition

slope AP ≤ slope PB (27.1)

forces the slope of AB to lie in between these values. For example, since
the slope of AP is ≤ the slope of PB, the segment AP produced beyond P
would end up below B, and this would mean that the slope of AP is ≤ the
slope of AB.

Similarly, f is concave over an interval if the secant slopes decrease.
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27.3 Checking convexity/concavity

In this section we will see how to check convexity/concavity of specific func-
tions and how to work with such functions. The methods used will be justified
in later sections.

A function f is convex on an interval U if its derivative f ′ is an increasing
function on U (this means f(s) ≤ f(t) if s ≤ t); it is strictly convex if f ′ is
strictly increasing (f(s) < f(t) if s < t). Mostly we can check for convexity
even more efficiently: if the second derivative f ′′ is ≥ 0 on U then f is convex
on U , and if f ′′ > 0 on U then f is strictly convex on U .

For concavity we have the analogous results. A function f is concave on
an interval U if its derivative f ′ is a decreasing function on U ; it is strictly
concave if f ′ is strictly decreasing (f(s) < f(t) if s < t). If f ′′ is ≤ 0 on U
then f is concave on U , and if f ′′ < 0 on U then f is strictly concave on U .

Consider the function
x2.

Its second derivative is 2:

(x2)′ = 2x and (x2)′′ = 2 > 0,

and so x2 is strictly convex on R.
Next consider

x4

Its second derivative is 12x2, which is ≥ 0 everywhere and so the function
is convex. (In fact it is strictly convex even though 12x2 hits 0 at the single
point x = 0.)

More generally, consider

xp,

for x in the interval (0,∞), where p is some constant. The derivative is pxp−1

and the second derivative is

p(p− 1)xp−2.

If the power p is ≥ 1 then this second derivative is ≥ 0 for all x ∈ R and so
xp is convex on (0,∞) if p ≥ 1. In fact, xp is strictly convex on (0,∞) if
p > 1.
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Another example is

1

x

Its derivative is
−x−2

and the second derivative is

(−1)(2)x−3 = 2x−3 =
2

x3
,

which is > 0 when x > 0 and is < 0 when x < 0. Thus

1/x is strictly convex for x ∈ (0,∞),

and is strictly concave for x < 0.
Now let us look at

ex.

The second derivative is ex, which is positive. Hence, ex is strictly convex on
R.

Lastly consider
log x

for x > 0. The derivative is
1/x,

which is strictly decreasing. Hence log x is strictly concave.

27.4 Inequalities from convexity/concavity

Recall that a function Φ, on an inerval U , is convex if its graph lies below
the secant segments, with strict convexity meaning that the graph always
lies strictly below the secant segments. From this one can show that Φ is
convex if and only if

Φ(weighted average) ≤ weighted average of Φ, (27.2)

so that, for instance

Φ

(
1

3
a+

2

3
b

)
≤ 1

3
Φ(a) +

2

3
Φ(b),
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for all a, b ∈ U . Strict convexity means that here ≤ would be replaced by
< except in the trivial case where a = b. For concavity condition (27.2) is
altered by replacing ≤ by ≥.

The weighted average might involve several points/numbers drawn from
U . For example, if Φ is convex on an interval U then

Φ

(
1

10
a+

1

10
b+

8

10
c

)
≤ 1

10
Φ(a) +

1

10
Φ(b) +

8

10
Φ(c),

for all a, b, c ∈ U .

A weighted average is also called a convex combination. Thus,

2

7
a+

1

7
b+

3

7
c+

1

7
d

is a convex combination of a, b, c, and d. Thus, a convex combination of
p1, . . . , pN ∈ R is of the form

w1p1 + · · ·+ wNpN ,

where the weights w1, . . . , wN lie in [0, 1] and add up to 1:

w1 + · · ·+ wN = 1.

Thus, (27.2), written out more formally says that a function Φ on an interval
U is convex if and only if

Φ(w1p1 + · · ·+ wNpN) ≤ w1Φ(p1) + · · ·+ wNΦ(pN) (27.3)

for all p1, . . . , pN ∈ U and all weights w1, . . . , wN ∈ [0, 1] (adding to 1), for
every choice of N ∈ {1, 2, 3, . . .}. The function Φ is strictly convex if (27.3)
holds with ≤ replaced by < if the points p1, . . . , pN are all distinct and none
of the weights is 1. For concavity we simply reverse the inequalities.

Let us apply the characterization of convexity given in the inequality
(27.3) to the functions we looked at in the preceding section.

For the convex function x2 we have, using the simplest interesting weighted
average: (

1

2
a+

1

2
b

)2

≤ 1

2
a2 +

1

2
b2. (27.4)



DRAFT Calculus Notes 11/17/2011 211

Thus, the the square of an average is at most the average of the squares. Note
that since x2 is actually strictly convex the inequality ≤ can be replaced by
<, unless a = b. With three points we have(

1

3
a+

1

3
b+

1

3
c

)2

≤ 1

3
a2 +

1

3
b2 1

3
c2. (27.5)

More generally, for any x1, . . . , xN ∈ R we have(
x1 + · · ·+ xN

N

)2

≤ 1

N

(
x2

1 + · · ·+ x2
N

)
. (27.6)

Here the ≤ can be replaced by < except in the case all the xi’s are equal.
We can also write the inequality (27.6) as:

x2
1 + · · ·+ x2

N ≥
(x1 + · · ·+ xN)2

N
, (27.7)

with equality holding if and only if all the xi are equal.
Here is a quick application: suppose a length L of wire is cut into N

pieces, of lengths x1, . . . , xN , and each piece is bent into a square; what
should the lengths xi be in order fot the squares to cover a minimum total
area? To answer this notice that the sum of the areas of the squares is(x1

4

)2

+ · · ·+
(xN

4

)2

=
x2

1 + · · ·+ x2
N

16
,

and from (27.7) we see that this is

≥ (x1 + · · ·+ xN)2/N

16
=

L2

16N
,

with ≥ being = if and only if all the xi are equal. Thus the minimum area
is obtained if the wire is cut into equal lengths and the minimum area thus
obtained is L2/(16N).

Now we turn to another example, the strictly concave function log, defined
on (0,∞). Working with the equally weighted average of a, b > 0 we have

log

(
1

2
a+

1

2
b

)
≥ 1

2
log a+

1

2
log b. (27.8)
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The right side simplifies to

1

2
(log a+ log b) =

1

2
log(ab) = log

√
ab.

So the inequality reads

log

(
a+ b

2

)
≥ log

√
ab, (27.9)

with equality if and only if a = b. Since log is a strictly increang function,
this inequality becomes

a+ b

2
≥
√
ab, (27.10)

with equality if and only if a = b. Now let us apply concavity to three values
a, b, c; this leads to

log

(
a+ b+ c

3

)
≥ 1

3
(log a+ log b+ log c) = log(abc)1/3,

which means
a+ b+ c

3
≥ (abc)

1
3 , (27.11)

with equality if and only if a, b and c are equal.
The inequalities (27.9) and (27.12) area purely algebraic, having nothing

to do with log, and, at first sight, seem to have no relationship to each
other. (The first inequaity (27.9) can be proved directl just by simple algebra:
(
√
a−
√
b)2 ≥ 0 implies a+ b−2

√
ab ≥ 0). However, both express a common

idea: the arithmetic mean (AM) is greater or equal to the geometric mean.
(GM) The general version of this AM-GM inequality is:

x1 + · · ·+ xN
N

≥ (x1 . . . xN)
1
N , (27.12)

with equality if and only if all the xi are equal. This follows from the strict
concavity of log.

Not all convex functions of interest are differentiable everywhere. Here
are a few convex functions that are not differentiable at all points:

|x|, x+ = max{x, 0}, (x−K)+ = max{x−K, 0},

for any constant K ∈ R.



DRAFT Calculus Notes 11/17/2011 213

x

y

y = |x|

Figure 27.4: The convex function |x|

x

y

y = (x− 1)+

Figure 27.5: The convex function (x− 1)+

27.5 Convexity and derivatives

We have seen in section 27.2 that convexity of a function can be understood
in terms of increasing secant slopes. From this we arrive at a condition for
convexity for differentiable functions:

Proposition 27.5.1 Suppose f is a function on an interval U on which f
is differentiable.

Then f is convex on U if and only if f ′ is an increasing function in the
sense that f ′(s) ≤ f ′(t) for all s, t ∈ U with s ≤ t.

The function f is concave if and only if f ′ is an decreasing function in
the sense that f ′(s) ≥ f ′(t) for all s, t ∈ U with s ≤ t.

Proof. Suppose f is convex on U , and s, t ∈ U with s < t. Then for any
x,w ∈ [s, t] with

s < x < w < t
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we have the increasing slope condition

f(x)− f(s)

x− s
≤ f(t)− f(w)

t− w

Now taking the limits x→ s and w → t we have

f ′(s) ≤ f ′(t).

Conversely, suppose the function f on U has increasing slope f ′. Consider
a, p, b ∈ U with

a < p < b.

Let A be the point
(
a, f(a)

)
, and B the point (b, f(b)) and P the point

(p, f(p)). Then

slope of AP =
f(p)− f(a)

p− a
= f ′(s) for some s ∈ (a, p),

by the mean value theorem. We also have:

slope of PB =
f(b)− f(p)

b− p
= f ′(t) for some t ∈ (p, b),

Since s ≤ t (because p lies between them), we know that

f ′(s) ≤ f ′(t).

Hence
slope of AP ≤ slope of PB.

Since this holds for all points a, p, b ∈ U , with a < p < b, the function f is
convex on U .

The argument for concavity is exactly similar. QED

Observe in the proof that if f ′ is assumed to be strictly increasing, that
is

f(s) < f(t) whenever s < t and s, t ∈ U

then f is strictly convex.
Similarly, if f ′ is strictly decreasing then f is strictly concave.
When working with functions that are twice differentiable there is an

easier condition for convexity:
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Proposition 27.5.2 Suppose f is a function on an interval U on which f
is differentiable, and suppose also that f ′ is differentiable on U .

Then

(i) f is convex if and only if f ′′ is ≥ 0 on U ;

(ii) f is concave if and only if f ′′ is ≤ 0 on U .

For strict convexity/concavity we have:

(iii) f is strictly convex if f ′′ is > 0 on U ;

(iv) f is strictly concave if f ′′ is ≤ 0 on U .

Note that in (iii) and (iv) we don’t have the ‘only if’ parts. For example,
x4 is strictly convex but its second derivative is 12x2 which is 0 when x = 0.
Proof. If f ′′ ≥ 0 on U then f ′ is an increasing function on U (by Proposition
23.1.3) and so by Proposition 27.5.1 we conclude that f is convex. Conversely,
if f is convex then by Proposition 27.5.1 the derivative f ′ is an increasing
function on U and so, by Proposition 23.1.1, its derivative f ′′ is ≥ 0 on U .
The results (iii) and (iv) follow similarly. QED

27.6 Supporting Lines

Consider a convex function Φ on an open interval U ⊂ R. We have seen in
(27.1) that for any point p ∈ U the slopes of secant segments of the graph of
f to the right of p exceed the slopes to the left of p¿ More formally:

Φ(a)− Φ(p)

a− p
≤ Φ(b)− Φ(p)

b− p
for all a, b ∈ U with a < p < b. (27.13)

If we now squeeze in a value m ∈ R between these left secant segment
slopes and right secant segment slopes (we will examine this more carefully
below) then we have

slope of any secant seg-
ment to the left of p

≤ m ≤ slope of any secant seg-
ment to the right of p.

Consider now the line L through (p,Φ(p)) whose slope is m. To the right
of p it lies below all the secant segments for the graph of f and so the line L
lies below the graph of Φ to the right of p. But to the left of p the slope of L
is greater than the secant slopes and so again the line L lies below the graph
of Φ to the left of p. Thus we have:
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Proposition 27.6.1 Suppose Φ is a convex function on an open interval U ,
and let p be any point in U . Then there is a value m ∈ R such that the line
through

(
p,Φ(p)

)
with slope m lies below the graph of Φ; more precisely,

L(x) ≤ Φ(x) for all x ∈ U ,

where y = L(x) is the equation of the line through (p,Φ(p)) having slope m.

x

y

y = Φ(x)

y = L(x)

Figure 27.6: Supporting line for a convex function

A line such such as L is called a supporting line for Φ at p.
If Φ′(p) exists at p then there is only one choice for the line L: it is the

line through (p,Φ(p)) with slope m = Φ′(p), that is, it is the tangent line
to the graph of Φ at (p,Φ(p)). Notice that our conclusion that m is a real
number forces Φ′(p), if it exists, to be finite.
Proof. All we have to do is prove that a real number m exists satisfying

Φ(a)− Φ(p)

a− p
≤ m ≤ Φ(b)− Φ(p)

b− p
for all a, b ∈ U with a < p < b. (27.14)

Since (27.13) holds for every a ∈ U to the left of p we see that the ‘right

slope’ Φ(b)−Φ(p)
b−p is an upper bound for all the ‘left slopes’, and so

sup
a∈U,a<p

Φ(a)− Φ(p)

a− p
≤ Φ(b)− Φ(p)

b− p
,

because sup is the least upper bound. Let us denote the sup by Φ′−(p):

m−
def
= sup

a∈U,a<p

Φ(a)− Φ(p)

b− p
.



DRAFT Calculus Notes 11/17/2011 217

Thus,

m− ≤
Φ(b)− Φ(p)

b− p
for all b ∈ U with p < b.

Thus m− is a lower bound for all the right slopes, and so

m− ≤ m+ (27.15)

where

m+
def
= sup

b∈U,b>p

Φ(b)− Φ(p)

b− p
.

Both the left and right derivatives m± are finite as they exceed all the secant
segment slopes to the left of p and are ≤ all the secant segment slopes to the
right of p. Now we can simply take m to lie between these values:

m−leqm ≤ m+

QED
The secant slope inequalities for a convex function have the following

remarkable consequence:

Proposition 27.6.2 Any convex function on an open interval U is contin-
uous on U .

Proposition 27.6.1 leads to a way of understanding convex functions by
means of the supporting lines:

Proposition 27.6.3 If Φ is a convex function on an open interval U then
Φ is the supremum of all the ‘line-functions’ that lie below it:

Φ(p) = sup
L≤Φ

L(p) for all p ∈ U , (27.16)

where L denotes any function of the form L(x) = Mx + k, with constant
M,k ∈ R, for all x ∈ U .

Proof. We have already seen in Proposition 27.6.1 that the graph of Φ has
a supporting line at every point. Thus for any p ∈ U there is a function L,
whose graph is a line, for which L(x) ≤ Φ(x) for all x ∈ U (this means the
graph of L lies below the graph of Φ) and L(p) = Φ(p). This proves (27.16),
by showing that in fact there is actually an L for which both L ≤ Φ on U
and L(p) = Φ(p). QED
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27.7 Convex combinations

If a, b ∈ R are points with a < b, then any point p ∈ [a, b] can be reached by
starting at a and moving towars b, covering a fraction

p− a
b− a

of the interval [a, b]. Thus,

p = a+

[
p− a
b− a

]
(b− a),

a formula you can readily check directly with algebra. Let µ denote the
fraction

µ =
p− a
b− a

.

Since p ∈ [a, b] it is clear that µ ≥ 0 and the most it can be is (b−a)/(b−a) =
1:

µ ∈ [0, 1].

We can write p as

p = a+ µ(b− a) = a+ µ(b)− µa = a− µa + µb = (1− µ)a+ µb.

Writing λ for 1 − µ we thus see that every point p ∈ [a, b] can be expressed
as a convex combination of a and b:

p = λa+ µb, (27.17)

where λ and µ are weights, in the sense that they are non-negative and add
up to 1 (which forces λ and µ to be ≤ 1):

λ, µ ∈ [0, 1], λ+ µ = 1.

Conversely, any convex combination (27.17) is at most b (the weight on a,
which is < b, would draw the value of p down below b) and at least a:

a ≤ any convex combination of a and b ≤ b.

The point half way between a and b is

1

2
a+

1

2
b =

a+ b

2
,
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whereas the point 2/5-th of the way from a to b is:

3

5
a+

2

5
b =

23a+ 2b

5
.

A convex combination of points p1, . . . , pN is a point which can be ex-
pressed as

w1p1 + · · ·+ wNpN ,

where the ]em weights w1, . . . , wN all lie in [0, 1] and sum to 1:

w1 + · · ·+ wN = 1.

Note that if p1 = · · · = pN , all points coinciding, then their convex combina-
tion is just that one point, since then

w1q + · · ·+ wNq = (w1 + · · ·+ wN)q = 1 · q = q,

where q is the common value of the pi.
For a given set of points p1, . . . , pN , the largest (the most to the right)

that a convex combination could be is maxj pj, and for this we would have
to distribute the entire weight 1 on those j for which pj is largest, and take
all the other weights to be 0; for example, for a, b, c, withd = c > b > a, the
weighed average

w1a+ w2b+ w3c+ w4d = w1a+ w2b+ (w3 + w4)d

is largest if w3 + w4 = 1 and w1 = w2 = 0.
Similarly, the least value a convex combintation of p1, . . . , pN could have

is minj pj, and this is obtained if and only if a weight of 0 is given to non-
minimum values of pj.

A multiple convex combination can be built out of convex combinations
of pairs. For example,

2

10
a+

3

10
b+

5

10
c =

2

10
a+

8

10

[ 3
10
b+ 5

10
c

8
10

]
,

where notice that the quantity inside [· · · ] is indeed also a convex combina-
tion; we thus have, on the right, a convex combination of convex combina-
tions. More generally, for N ∈ {2, 3, . . .}, any points p1, . . . , pN ∈ R, and any
weights w1, . . . , wN ∈ [0, 1] (summing to 1) we have

w1p1 + · · ·+ wNpN = w1p1 + (1− w1)

[
w1p1 + · · ·+ wNpN

1− w1

]
(27.18)
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and the quantity inside [· · · ] is a convex combination of the N − 1 points
p1, . . . , pN−1.

The following result expresses the simultaneous convexity and concavity
of functions whose graphs are straight lines:

Proposition 27.7.1 If L is a function whose graph is a straight line, that
is if

L(x) = Mx+ k for all x ∈ R,

for some constants M,k ∈ R, then

L(w1p1 + · · ·+ wNpN) = w1L(p1) + · · ·+ wNL(pN) (27.19)

for all p1, . . . , pN ∈ R and w1, . . . , wN ∈ R with w1 + · · ·+ wN = 1.

Note that in (27.19) we have just a linear combination

w1p1 + · · ·+ wNpN

and the coefficients wi need not be in [0, 1] nor have to sum to 1.
Proof. It is more convenient to start with the right side of (27.19):

w1L(p1) + · · ·+ wNL(pN) = w1(Mp1 + k1) · · ·+ wN(MpN + k)

= w1Mp1 + w1k + · · ·+ wNMpN + wNk

= Mw1p1 + · · ·+MwNpN + (w1 + · · ·+ wN)k

= M(w1p1 + · · ·+ wNpN) + k

(because w1 + · · ·+ wN = 1)

= L(w1p1 + · · ·+ wNpN).

Thus L maps linear combinations to linear combinations. QED
This leads to the following convenient formulation of convexity of a func-

tion Φ:

Proposition 27.7.2 A function Φ on an interval U ⊂ R is convex if and
only if

Φ(λa+ µb) ≤ λΦ(a) + µΦ(b) (27.20)

for all a, b ∈ R and all weights λ, µ ∈ [0, 1] with λ + µ = 1. The function
Φ is strictly convex if and only if (27.20) holds for all a, b, λ, µ as above but
with ≤ replaced by < whenever the three points a, λa+ µb and b are distinct
(no two are equal to each other).
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Proof. We can work with a, b ∈ U , with a < b (if a = b then (27.20 ) is
an equality, both sides being Φ(a)). Let A be the point (a,Φ(a)) and B the
point (b,Φ(b)). The straight line joining A to be B has equation

y = L(x) = Mx+ k

for some constants. Consider now any point p ∈ [a, b]; we can write this as

p = λa+ µb

for some λ, µ ∈ [0, 1] with λ + µ = 1 (see (27.17)). The condition that the
graph of Φ is below the graph of L is

Φ(p) ≤ L(p)

for all such p. Now

L(p) = L(λa+ µb) = λL(a) + µL(b),

by Proposition 27.7.1. Since y = L(x) passes through A and B, on the graph
y = Φ(x), we have

L(a) = Φ(a), and L(b) = Φ(b). (27.21)

Combining all these observations we have

Φ(λa+ µb) ≤ λL(a) + µL(b) = λΦ(a) + µΠ(b),

which establishes (27.20) as being equivalent to the convexity condition for
Φ. For strict convexity, the point

(
p,Φ(p)

)
lies strictly below (p, L(p)), which

means Φ(p) < L(p) when p is strictly between a and b. Translating from p
to λa+µb, and using again the equalities (27.21) we obtain the condition for

strict convexity of Φ. QED

It is now easy to raise the inequality (27.20) to an inequality for convex
combinations for multiples points. For example, for points p1, p2, p3 ∈ U , we
have

Φ(w1p1 + w2p2 + w3p3) = Φ

(
w1p1 + (1− w1)

(
w2p2 + w3p3

1− w1

))
≤ w1L(p1) + (1− w1)L

(
w2p2 + w3p3

1− w1

)
= w1L(p1) + (1− w1)

(
w2

1− w1

L(p2) +
w3

1− w1

L(p3)

)
= w1L(p1) + w2L(p2) + w3L(p3).
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This procedure (the method of induction) leads to the conclusion that

Φ(w1p1 + · · ·+ wNpN) ≤ w1Φ(p1) + · · ·+ wNΦ(pN) (27.22)

for every convex function Φ on any interval U , any N ∈ {1, 2, . . .}, any points
p1, . . . , pN ∈ U , and all weights w1, . . . , wN ∈ [0, 1] adding up to 1.
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Exercises on Maxima/Minima, Mean Value Theorem,
Convexity

1. Find the maximum value of x2/x for x ∈ (0,∞). Explain your reasoning
fully and present all calculations clearly.

2. Find the distance of the point (1, 2) from the line whose equation is

3x+ 4y − 5 = 0.

3. Suppose f is a twice differentiable function on [1, 5], with f(1) = f(3) =
f(5). Show that there is a point p ∈ (1, 5) where f ′′(p) is 0.

4. Explain briefly why

log 101− log 100 < .01.

5. Prove the inequality

1(
a+b

2

)2 ≤
1

2

1

a2
+

1

2

1

b2

for any a, b > 0.
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Chapter 28

L’Hospital’s Rule

L’Hospital’s rule makes it possible to compute weird limits such as

lim
x→∞

x1/x,

and is worth studying just for that reason. It has been a staple topic in any
introduction to calculus since l’Hospital’s own book, reputed to be the first
textbook on calculus.

Briefly, l’Hospital’s rule says

lim
x→p

f(x)

g(x)
= lim

x→p

f ′(x)

g′(x)
(28.1)

if f(x) and g(x) both go to 0, or both go to ±∞, as x→ p, and if the limit
on the right exists. Assuming that f and g both have domain a set S, here
is a more detailed statement of the conditions:

• there is a neighborhood U of p ∈ R∗ such that that the part of U in
S, with p added in if necessary, that is the set W = (S ∩ U) ∪ {p}, is
either U or a one-sided neighborhood of p of the form (a, p] or [p, a),
for some a ∈ R;

• g(x) 6= 0 and g′(x) 6= 0 for all x ∈ W , with x 6= p;

• limx→p f(x) and limx→p g(x) are either both 0 or are both in {−∞,∞};

• the limit limx→p
f ′(x)
g′(x)

exists.

225
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28.1 Examples

Avoiding silly examples such as

lim
x→1

x2 − 1

x− 1

(which is 2 as can be seen directly from x2 − 1 = (x− 1)(x+ 1)) let us work
out the following simple but more interesting use of l’Hospital’s rule:

lim
x→0

sinx− x
1
3!
x3

.

The first thing to observe is that both numerator and denominator go to 0
as x→ 0. So we could, poentially use l’Hospital’s rule:

lim
x→0

sinx− x
1
3!
x3

= lim
x→0

cosx− 1
1
3!

3x2
, (28.2)

provided the limit on the right exists. To deal with this limit observe again
that both numerator and denominator go to 0 as x → 0, and so we could
again try l’Hospital:

lim
x→0

cosx− 1
1
3!

3x2
= lim

x→0

− sinx
1
3!

3 · 2x
= − lim

x→0

sinx

x
, (28.3)

and we do know that this limit exists and its value is −1. Thus l’Hospital’s
rule does imply that the equality (28.3) holds, and this shows that the right
side of (28.2) exists, which then justifies the equality (28.2) by l’Hospital’s
rule. This somewhat convoluted logic is summarized simply in:

lim
x→0

sinx− x
1
3!
x3

l′H.
= lim

x→0

cosx− 1
1
3!

3x2
(if the right side exists)

l′H.
= lim

x→0

− sinx
1
3!

3 · 2x
(if this exists)

= − lim
x→0

sinx

x
= −1 (whch justifies the 2nd and hence the 1st equality above).

(28.4)
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Thus, for x close to 0 we should be able to approximate the difference
sinx− x by − 1

3!
x3, and so

sinx ' x− 1

3!
x3

for x near 0.
Now we carry this a step beyond, finding an estimate for the difference

sinx−
[
x− 1

3!
x3

]
.

By repeated use of l’Hospital’s rule we have:

lim
x→0

sinx−
[
x− 1

3!
x3
]

1
5!
x5

l′H.
= lim

x→0

cosx−
[
1− 1

3!
3x2
]

1
5!
x5

(if the right side exists)

= lim
x→0

cosx−
[
1− 1

2!
x2
]

1
4!
x4

(by algebraic simplification)

l′H.
= lim

x→0

− sinx−
[
− 1

2!
2x
]

1
4!

4x3
(if the right side exists)

= − lim
x→0

sinx− x
1
3!
x3

(by algebraic simplification)

= −(−1) (by the previous example)

= 1.

(28.5)

Each application of the l’Hospital rule above was a case where the limit of
the ratio had the form 0/0.

We turn now to a different example:

lim
x→∞

x
1
x = lim

x→∞

[
elog x

] 1
x

= lim
x→∞

e
log x
x

= elimx→∞
log x
x (the exponent here is formally ∞/∞)

l′H.
= elimx→∞

1/x
1

= e0

= 1.

(28.6)
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28.2 Proving l’Hospital’s rule

The key step in proving l’Hospital

lim
x→p

f(x)

g(x)
= lim

x→p

f(′x)

g′(x)
,

with f(x) and g(x) both → 0 as x→ p, is the observation that

f(x)

g(x)
=
f(′c)

g′(c)
,

for some c between x and p; when x → p, the point c also → p and this
shows that the above ratios approach the same limit. This is formalized in
the following version of the mean value theorem:

Proposition 28.2.1 Suppose F and G are continuous functions on a closed
interval [a, b], where a, b ∈ R∗ and a < b, with values in R. Suppose that F
and G are differentiable on (a, b), with G′(x) 6= 0 for all x ∈ (a, b). Then

F (b)− F (a)

G(b)−G(a)
=
F ′(c)

G′(c)
(28.7)

for some c ∈ (a, b).

Since G′ is never 0 on (a, b) it follows by Rolle’s theorem that G(b)−G(a) 6= 0.
Proof. Consider the function H defined on [a, b] by

H(x) = [G(b)−G(a)] [F (x)− F (a)]− [F (b)− F (a)] [G(x)−G(a)]

for all x ∈ [a, b].
(28.8)

This is clearly continuous on [a, b] and differentiable on (a, b) with derivative
given by

H(′x) = [G(b)−G(a)]F ′(x)− [F (b)− F (a)]G′(x) (28.9)

for all x ∈ (a, b).
Observe also that

H(a) = H(b) = 0.
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Then by Rolle’s theorem applied to H there is a point c ∈ (a, b) where H ′(c)
is 0; this means

[G(b)−G(a)]F ′(c)− [F (b)− F (a)]G′(c) = 0. (28.10)

Thus
[F (b)− F (a)]G′(c) = [G(b)−G(a)]F ′(c),

which implies the result (28.7). QED
Now we can prove one form of l’Hospital’s rule:

Proposition 28.2.2 Suppose f and g are differentiable functions on an in-
terval U ⊂ R∗, with g(x) 6= 0 and g′(x) 6= 0 for all x ∈ U in some neighbor-
hood of a limit point p ∈ R∗ of U , and suppose

lim
x→p

f(x) = 0 and lim
x→p

g(x) = 0.

Then

lim
x→p

f(x)

g(x)
= lim

x→p

f ′(x)

g′(x)
(28.11)

if the limit on the right in (28.11) exists.

Proof. Let W be a closed interval, one of whose endpoints is p and for which
all points of W , except possibly for p, lie inside U . Define F and G on U∪{p}
by requiring that F (x) = f(x) and G(x) = g(x) for all x ∈ U with x 6= p,
and setting

F (p) = 0 and G(p) = 0.

What this does is make f and g defined and continuous at p in case it wasn’t
to start with; more precisely, F and G are continuous on U ∪ {p}. For any
x ∈ U , in a neighborhood of p, with x 6= p we have

f(x)

g(x)
=
F (x)− F (p)

G(x)−G(p)
,

because F (p) and G(p) are both 0 and F (x) = f(x) and G(x) = g(x). Then,
for such x, we have by Proposition 28.2.1

f(x)

g(x)
=
F ′(cx)

G′(cx)
=
f ′(cx)

g′(cx)
,
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for some cx strictly between x and p. Letting x→ p makes cx → p and so

lim
x→p

f(x)

g(x)
= lim

x→p

f ′(cx)

g′(cx)
= lim

w→p

f ′(w)

g′(w)
,

since we assume that the right side here exists. QED
We turn now to the case where f and g have infinite limits:

Proposition 28.2.3 Suppose f and g are differentiable functions on an in-
terval U ⊂ R∗, with g(x) 6= 0 and g′(x) 6= 0 for all x ∈ U in some neighbor-
hood of a limit point p ∈ R∗ of U , and suppose

lim
x→p

f(x) ∈ {−∞,∞} and lim
x→p

g(x) ∈ {−∞,∞}.

Then

lim
x→p

f(x)

g(x)
= lim

x→p

f ′(x)

g′(x)
(28.12)

if the limit on the right in (28.12) exists.

Proof. From

f(x)− f(a)

g(x)− g(a)
=
f(x)

g(x)

[
1− f(a)

f(x)

1− g(a)
g(x)

]
(28.13)

we see that since both f(x) and g(x) approach ±∞ as x → p, the limiting

behavior of f(x)/g(x) and f(x)−f(a)
g(x)−g(a)

is the same. This is the motivation for
the strategy we use.

Let

L = lim
x→p

f ′(x)

g′(x)
,

and W any neighborhood of L. Choose a smaller neighborhood W1 of L such
that

cW1 ⊂ W for all c ∈ (1/2, 2). (28.14)

There is an interval V that is a neighborhood of p such that

f ′(x)

g′(x)
∈ W1 (28.15)
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for all x ∈ V ∩ U and x 6= p. Pick any two distinct points a, x ∈ V ∩ U ,
neither equal to p; then

f(x)− f(a)

g(x)− g(a)
=
f ′(c)

g′(c)

for some c between a and x, and hence in V (note that g(x) 6= g(a) because
by Rolle’s theorem if g(x) = g(a) then g′ would be 0 at a point between a
and x, contrary to the given assumption that g′ is never 0 on U). Hence by
(28.15) we have

f(x)− f(a)

g(x)− g(a)
∈ W1,

for distinct a, x ∈ V ∩ U , neither equal to p. Since

lim
x→p

[
1− g(a)

g(x)

1− f(a)
f(x)

]
= 1

there is a neighborhood U0 of p such that

1− g(a)
g(x)

1− f(a)
f(x)

∈ (1/2, 2) for all x ∈ U0 ∩ U

From (28.13) we have

f(x)

g(x)
=

[
f(x)− f(a)

g(x)− g(a)

][
1− g(a)

g(x)

1− f(a)
f(x)

]

and so, on using (28.14), we conclude that

f(x)

g(x)
∈ W

for all x ∈ U0 ∩ U ∩ V . Since this is true for any neighborhood W of L, we
conclude that f(x)/g(x)→ L as x→ p. QED
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Exercises on l’Hosptal’s rule

1. Work out the limit

lim
x→0

cosx−
[
1− 1

2!
x2
]

1
4!
x4

clearly justifying each step.

2. Suppose g′ is continuous, g(2) = 0 and g′(2) = 1. Work out the limit

lim
w→0

g(2 + w) + g(2 + 3w)

w

clearly justifying each step.

3. Find
lim
y→∞

y
1
y



Chapter 29

Integration

The development of calculus has two original themes: (i) the notion of tan-
gent to a curve, (ii) computing areas of curved regions. The former leads
to differential calculus, and the latter to integral calculus, to which we turn
now.

29.1 From areas to integrals

The classical idea of area A of a region S enclosed by a curve is that A should
be≤ the sum of areas of any finite collection of squares that cover the region S
and A should be ≥ the sum of areas of any finite collection of squares inside
S. This simple and perfectly natural idea fails to produce a completely
satisfactory and usable measure of area when the region S is ‘unintuitive’
(for example S consists of all points (x, y) ∈ R2 with irrational coordinates),
but it is meaningful, intuitive and computable for regions bounded by well
behaved curves.

We are mainly interested in the area of the region lying below a graph

y = f(x),

and above the x-axis, for x ∈ [a, b]. See Figure 29.1. For this discussion we
assume f ≥ 0. Suppose A is the area of this region, a notion we will pin
down as the discussion progresses.

An overestimate of A will surely be obtained by the sum of areas of ‘upper
rectangles’ obtained by slicing the region into vertical pieces. More precisely

233
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partition [a, b] into N intervals marked off by

a = t0 < t1 < . . . < tN = b.

By the k-th ‘upper rectangle’ we mean the rectangle whose base runs along
the x-axis from x = tk−1 to x = tk and whose height is

Mk = sup
x∈[tk−1,tk]

f(x). (29.1)

The area of this upper rectangle is

Mk(tk − tk−1).

The width tk − tk−1 is often denoted by ∆tk:

∆tk = tk − tk−1. (29.2)

Thus the area of the k-th upper rectangle is

Mk∆tk.

The sum of all the upper rectangles is

N∑
k=1

Mk∆tk = M1∆t1 + · · ·+MN∆tN .

Thus the upper rectangles provide an overestimate of the area A:

A ≤
N∑
k=1

Mk∆tk.

Similarly, working with lower rectangles we have an understimate of the
area:

N∑
k=1

mk∆tk ≤ A,

where
mk = inf

x∈[tk−1,tk]
f(x). (29.3)

Thus the actual area A lies between the overestimates given by the upper
sums and underestimates given by the lower sums:

N∑
k=1

mk∆tk ≤ A ≤
N∑
k=1

Mk∆tk. (29.4)

Surely, the area A is the unique value that lies between all the upper sums
and all the lower sums. We can take this as definition of area under a graph.
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x

y

a b

y = f(x)

Figure 29.1: Area below y = f(x)

x

y

a = t0 t1 t2 b = t3

M1 M3

y = f(x)

Area

M2∆t2

M2 = sup
x∈[t1,t2]

f(x)

Area under graph is ≤M1∆t1 +M2∆2 +M3∆t3︸ ︷︷ ︸
sum of upper rectangle areas

Figure 29.2: Area below y = f(x) overestimated by upper recangles

29.2 The Riemann integral

The ideas of the preceding section lead to the crucial notion of the integral
of a function. Let us first extract some helpful terminology from our earlier
discussions.

A partition P of an interval [a, b], with a, b ∈ R and a ≤ b, is a finite
subset of [a, b] containing both the end points a and b. Typically we denote
a partition by

P = {x0, x1, . . . , xN},

where

a = x0 < x1 < . . . < xN = b.
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The width of the k-th interval is denoted

∆xk = xk − xk−1. (29.5)

For a function
f : [a, b]→ R,

and the partition P , the upper sum is

U(f, P ) =
N∑
k=1

Mk(f)∆xk, (29.6)

and the lower sum is

L(f, P ) =
N∑
k=1

mk(f)∆xk, (29.7)

where

Mk(f) = sup
x∈[tk−1,tk]

f(x)

mk(f) = inf
x∈[tk−1,tk]

f(x).
(29.8)

In the degenerate case where b = a, the only partition of [a, a] is just the
one-point set {a}, and the upper and lower sums are taken to be 0.

If there is a unique value A for which

L(f, P ) ≤ A ≤ U(f, P ) (29.9)

for every partition P of [a, b], then A is called the Riemann integral of f , and
denoted ∫ b

a

f.

We will refer to this simply as the integral of f from a to b or over [a, b].

We say that f is integrable if
∫ b
a
f exists and is finite (in R).

The definition of the integral here is in the same spirit that of the concept
of limit back in (6.1) and the concept of tangent line in (13.1).

From (29.9) we see that an approximation to
∫ b
a
f( is given by∫ b

a

f(x) dx '
N∑
k=1

f(x∗k)∆xk, (29.10)
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where x∗k is any point in [xk−1, xk], for each k ∈ {1, . . . , N}. The sum on the
right in (29.10) is called a Riemann sum for f with respect to the partition
P . The relation (29.10) suggests the historical origin of the notation

∫
for

integration.
Note that if supx∈[a,b] f(x) is ∞ then at least one Mk(f) is ∞, for any

partition P , and so the upper sums are all ∞, and in this case the integral∫ b
a
f , if it exists, must also be∞. Similarly, if infx∈[a,b] f(x) is −∞ then

∫ b
a
f ,

if it exists, is −∞.
Thus, if f is integrable then it is bounded, in the sense that both its

supremum and its infinmum are finite.
If f is constant, with value C ∈ R then, working with any partition P as

above, we have

Mk(f) = C and mk(f) = C,

for all k ∈ {1, . . . , N}, and so

U(f, P ) = C∆x1 + · · ·+ C∆xN = C(∆x1 + · · ·+ ∆xN) = C(b− a),

and

L(f, P ) = C∆x1 + · · ·+ C∆xN = C(∆x1 + · · ·+ ∆xN) = C(b− a).

Hence ∫ b

a

C = C(b− a). (29.11)

29.3 Refining partitions

Consider a function f on an interval [a, b], and a partition P = {x0, . . . , xN}
of [a, b], with

a = x0 < . . . < xN = b.

Let us see what effect there is on the upper and lower sums when points are
added to P to make it a finer partition of [a, b]. Let us start by adding one
point s ∈ (xj−1, xj) to the j-th interval.

In the sum

U(f, P ) =
N∑
k=1

Mk(f)∆xk
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all terms remain the sum except for the j-th term: for this

Mj(f)∆xj

is replaced by
A(s− xj−1) +B(xj − s)

where A is the sup of f over [xj−1, s] and B is the sup of f over [s, xj]:

A = sup
x∈[xj−1,s]

f(x) and B = sup
x∈[s,xj ]

f(x).

Clearly these are both ≤Mj(f):

A,B ≤Mj(f),

and in fact at least one of them is equal to Mj(f). Hence

A(s− xj−1) +B(xj − s) ≤Mj(f)(s− xj−1) +Mj(f)(xj − s),

and observe that the right side here adds up to Mj(f)∆xj; thus:

A(s− xj−1) +B(xj − s) ≤Mj(f)∆xj.

Looking back at the upper sum U(f, P ) we conclude that

U(f, P1) ≤ U(f, P ),

where P1 is the partition obtained by adding the point s to P :

P ′ = P ∪ {s}.

Thus, adding a point to a partition (that is, splitting one of the intervals into
two) lowers the upper sum.

A similar argument shows that

L(f, P1) ≥ L(f, P );

adding a point to a partition raises the lower sum.
Adding points one by one enlarges a given partition P to any given larger

partition P ′, and at each stage in this process the upper sum is lowered and
the lower sum is raised:
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Proposition 29.3.1 Let f : [a, b] → R be a function, where a, b ∈ R and
a ≤ b, and P and P ′ any partitions of [a, b] with P ⊂ P ′; then

L(f, P ) ≤ L(f, P ′)

U(f, P ′) ≤ U(f, P ).
(29.12)

This implies the following natural but strong observation:

Proposition 29.3.2 Let f : [a, b] → R be a function, where a, b ∈ R and
a ≤ b, and P and Q any partitions of [a, b]; then

L(f, P ) ≤ U(f,Q). (29.13)

Thus, every upper sum of f is ≥ every lower sum of f .

We have seen something similar in our study of limits back in (6.14).
Proof. Let

P ′ = P ∪Q.
Then P ′ contains both P and Q, and so by Proposition 29.3.1 we have

L(f, P ) ≤ L(f, P ′) and U(f, P ′) ≤ U(f,Q).

Combining this with the fact that L(f, P ′) ≤ U(f, P ′) produces the inequality

(29.13). QED

29.4 Estimating approximation error

Consider a function f on an interval [a, b] ⊂ R, and let P = {x0, . . . , xN} be
a partition of [a, b] with

a = x0 < . . . < xN = b.

We know that the integral of f , if it exists, lies between the upper sum
U(f, P ) and the lower sum L(f, P ). So if U(f, P ) and L(f, P ) are close to
each other then either of these sums would be a good approximation to the
value of the integral. Let us find how far from each other the upper and
lower sums are:

U(f, P )− L(f, P ) =
N∑
k=1

Mk(f)∆xk −
N∑
k=1

mK(f)∆xk

=
N∑
k=1

[Mk(f)−mk(f)] ∆xk,

(29.14)
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where Mk(f) is the sup of f over [xk−1, xk] and mk(f) is the inf of f over
[xk−1, xk]. Thus

Mk(f)−mk(f) = the fluctuation of f over [xk−1, xk]. (29.15)

Thus if we can partition [a, b] so finely that the fluctuation of f over each
interval [xk−1, xk] is < .01 then

U(f, P )− L(f, P ) < .01∆x1 + · · ·+ .01∆xN

= .01 [∆x1 + · · ·+ ∆xN ] = (0.01)(b− a).
(29.16)

Thus we can shrink U(f, P )−L(f, P ) down by choosing the partition P such
that the fluctuation of f over each interval [xk−1, xk] is very small.

29.5 Continuous functions are integrable

The discussions of the preceding section lead to the following important re-
sult:

Theorem 29.5.1 If f : [a, b]→ R is continuous, where a, b ∈ R with a ≤ b,
then f is integrable.

The key to proving this result is the ability to partition [a, b] in such a
way that the fluctuation of f over the intervals are all very small:

Proposition 29.5.1 If f : [a, b] → R is continuous, where a, b ∈ R with
a ≤ b, then for any ε > 0 there is a partition P = {x0, . . . , xN} of [a, b], with
a = x0 < . . . < xN = b, such that the fluctuation of f over each interval
[xk−1, xk] is < ε.

This property is called uniform continuity of f .
Proof. We work with a < b, as the case a = b is trivial. Take

x0 = a.

Since f is continuous at a there is some x1 > a = x0 such that

f(x0)− ε

4
< f(x) < f(x0) +

ε

4
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for all x ∈ [x0, x1]. We can clearly take x1 ≤ b, as here is no need to go
beyond b. Thus

sup
x∈[x0,x1]

f(x) ≤ f(x0) +
ε

4

and

inf
x∈[x0,x1]

f(x) ≥ f(x0)− ε

4
.

These conditions imply that the fluctuation of f over [x0, x1] is ≤ ε/2, which
is, of course, < ε.

Now we can start at x1, if it isn’t already b, and produce a point x2 > x1

for which

f(x1)− ε

4
< f(x) < f(x1) +

ε

4

for all x ∈ [x1, x2]. Again, we can take x2 ≤ b. It might seem that in this
way we could produce the desired partition P . But there could be a problem:
the process might continue infinitely without reaching b. Fortunately, we can
show that this will not happen.

Suppose s is the supremum of all t ∈ [a, b] such that [a, t] has a partition
P0 = {x0, . . . , xK} for which the fluctuations of f over every interval of the
partition is < ε. Note that s > a. By continuity of f at s there is an interval
(p, q), centered at s, such that the fluctuation of f over (p, q) ∩ [a, b] is < ε.
Pick any point t ∈ (p, s), with t > a; then since t < s the definition of s
implies that there is a partition

P0 = {x0, . . . , xK}

of [a, t] such that the fluctuation of f over each interval [xj−1, xj] is < ε. Now
pick any point r ∈ [s, q) ∩ [a, b] and set

xK+1 = r.

Since the fluctuation of f over (p, q) is < ε, the fluctuation of f over the
subinterval [t, r] is < ε. Thus we have produced a point r, which is ≥ s,
such that there is a partition P = {x0, . . . , xK+1} of [a, r] for which the
fluctuations of f are all < ε. To avoid a contradiction with the definition of
s, we must have s = b (for otherwise, if s < b, we could have chosen r to be

> s) and the partition P has the desired fluctuation property. QED
Now we can prove Theorem 29.5.1.
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Proof of Theorem 29.5.1. All we need to do is show that for any ε > 0 there
is partition P of [a, b] for which U(f, P )−L(f, P ) is < ε; this will imply that
there is a unique value that lies between all the upper sums and all the lower
sums. Let ε > 0 and set, for convenience

ε1 =
ε

b− a
.

By Proposition 29.5.1 there is a partition

P = {x0, . . . , xN},

of [a, b] such that
a = x0 < . . . < xN = b

and
Mk(f)−mk(f) < ε1

for all k ∈ {1, . . . , N}. Then, by the argument used before in (29.16), we
have

U(f, P )− L(f, P ) < ε1(b− a).

Our choice of ε1 then means that U(f, P )− L(f, P ) is < ε. QED

29.6 A function for which the integral does

not exist

Consider the indicator function 1Q of the rationals:

1Q(x) =

{
1 if x ∈ Q;

0 if x /∈ Q
(29.17)

We focus on the restriction of 1Q over any interval [a, b] ⊂ R, with a < b.
Let P = {x0, . . . , xN} be any partition of [a, b], with

a = x0 < x1 < . . . < xN = b.

Observe that 1Q attains both the value 1 and the value 0 on each interval
[xk−1, xk] (because every such interval contains both rational and irrational
points). Hence

Mk(1Q) = sup
x∈[xk−1,xk]

1Q(x) = 1 and mk(1Q) = inf
x∈[xk−1,xk]

1Q(x) = 0.
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This makes the upper sum large:

U(1Q, P ) = 1 ·∆x1 + . . .+ 1 ·∆xN = b− a,

and the lower sum small:

L(1Q, P ) = 0 ·∆x1 + . . .+ 0 ·∆xN = 0.

There certainly are many real numbers lying between 0 and b − a, and so
there is no unique such choice. Hence,∫ b

a

1Q does not exist.

29.7 Basic properties of the integral

Integration of a larger function produces a larger number:

Proposition 29.7.1 If f and g are functions on an interval [a, b], where

a, b ∈ R and a ≤ b, for which the integrals
∫ b
a
f and

∫ b
a
g exist, and if f ≤ g

then ∫ b

a

f ≤
∫ b

a

g.

Proof. Suppose
∫ b
a
f >

∫ b
a
g. Since

∫ b
a
g is the unique value lying between

L(g, P ) and U(g, P ) for all partitions P of [a, b], there must be a partition P
of [a, b] such that ∫ b

a

f > U(g, P ).

Again, since
∫ b
a
f is the unique value lying between all upper and lower sums

for f there is a partition Q of [a, b] for which

L(f,Q) > U(g, P ). (29.18)

Let
P ′ = P ∪Q,

which is a partition of [a, b]. Since Q ⊂ P ′ and f ≤ g we have

L(f,Q) ≤ L(g,Q) ≤ L(g, P ′).
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Since P ⊂ P ′ we also have

U(g, P ′) ≤ U(g, P ).

Combining these inequalities produces

L(f,Q) ≤ L(g, P ),

contradicting (29.18). QED
Next we have linearity of the integral:

Proposition 29.7.2 Suppose f and g are functions on an interval [a, b],

where a, b ∈ R and a ≤ b, for which the integrals
∫ b
a
f and

∫ b
a
g exist. Assume

also that the sum ∫ b

a

f +

∫ b

a

g

is defined (thus, not ∞+(−∞) or (−∞) +∞). Then the integral
∫ b
a
f exists

and ∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g. (29.19)

Moreover, for any k ∈ R the integral
∫ b
a
kf of the function kf also exists and∫ b

a

kf = k

∫ b

a

f. (29.20)

If a function is integrable over an interval then it is integrable over any
subinterval:

Proposition 29.7.3 Suppose f is integrable over [a, b], where a, b ∈ R and
a ≤ b. The f is integrable over [c, d] for any c, d ∈ [a, b] with c ≤ d. Moreover,∫ b

a

f =

∫ c

a

f +

∫ b

c

f. (29.21)



Chapter 30

The Fundamental Theorem of
Calculus

The fundamental theorem of calculus connects differential calculus and in-
tegral calculus, and makes it possible to compute integrals by running the
derivative process in reverese.

30.1 Fundamental theorem of calculus

Here is one form of the fundamental theorem:

Theorem 30.1.1 Suppose f is an integrable function on [a, b], where a, b ∈
R, with a < b. Then the function F defined on [a, b] by

F (x) =

∫ x

a

f for all x ∈ [a, b]

is differentiable at p ∈ [a, b] if f is continuous at p, and F ′(p) is f(p). Thus,
if f is continuous on [a, b] then

d
∫ x
a
f

dx
= f(x) (30.1)

for all x ∈ [a, b].

Notice that (30.1) implies that any continuous function f on an interval
is the derivative of some function F on that interval.

Here is another version of the result:

245
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Theorem 30.1.2 Suppose g is a differentiable function on [a, b], where a, b ∈
R, with a < b, for which g′ is continuous. Then∫ b

a

g′ = g
∣∣∣b
a
. (30.2)

where g
∣∣∣b
a

means g(b)− g(a):

g
∣∣∣b
a

= g(b)− g(a).

30.2 Differentials and integrals

Consider a function f , differentiable at a point p ∈ R. The tangent line to
the graph y = f(x) through the point

(
p, f(p)

)
has slope f ′(p).

x

y

P

p

tangent line

h

df |p(h) = f ′(p)h

y = f(x)

Figure 30.1: The differential df at p

The differential of f at the point p is the function which takes as input
any horizontal step h and outputs the corresponding vertical rise

f ′(p)h

if une follows the tangent line to y = f(x) at P (p, f(p)). The differential of
f at p is denoted df |p and its value on any h ∈ R is thus

df |p(h) = f ′(p)h. (30.3)
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For example, for the function sin we have

d sin |π(3) = cos(π) ∗ 3 = −3.

The function x, that is the function whose graph is y = x, has the value p at
any point p:

x(p) = p for all p ∈ R.

The slope of y = x is 1 everywhere and so

dx|p(h) = 1 ∗ h = h.

A differential form Φ is a function that associates to each point p in some
domain set S ⊂ R a linear function Φ|p on R, that is

Φ|p(h) = Kph for all h ∈ R,

for some Kp ∈ R.
Thus, for a differentiable function f on some set S ⊂ R, the differential

df

is a differential form.
The product of a differential form Φ with a function g is defined as the

function whose value at p on h is

(gΦ)|p(h) = g(p)Φ|p(h). (30.4)

Sometimes we write gΦ as Φg; thus

Φg = gΦ (30.5)

Working with a differentiable function f we have

(df(x))|p(h) = f ′(p)h

and this is exactly the same as(
f ′(x)dx

)
|p(h) = f ′(p)h.

Hence we have the extremely useful notational identity:

df(x) = f ′(x)dx. (30.6)
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All of this notation has been designed to produce this notational consistency:

df(x)

dx
= f ′(x), (30.7)

where on the left we now have a genuine ratio (of functions), not just a formal
one.

Using equation (30.6) we can easily verify the following convenient iden-
tities:

d(f + g) = df + dg

dC = 0 if C is constant

d(fg) = (df)g + fdg

d

(
f

g

)
=
g df − f dg

g2

df(g(x)) = f ′(g(x))dg(x) (this is from the chain rule),

(30.8)

where f and g are differentiable functions on some common domain except
that in the last identity we assume the composite f(g(x)) is defined on some
open interval. (Note Φ

f
means 1

f
Φ, for any differential form Φ and function

f .)
As an example, we have

d log(sinx2) =
1

sinx2
cos(x2) ∗ 2x dx.

If f is a differentiable function on an interval containing points a and b
we define the integral of the differential df to be∫ b

a

df = f(b)− f(a). (30.9)

For example, ∫ π

π/2

d(sinx) = sinπ − sin(π/2) = 0− 1 = −1,

and ∫ 0

1

dex = e0 − e1 = 1− e,



DRAFT Calculus Notes 11/17/2011 249

where note that the upper endpoint is actually < than the lower endpoint.
All of what we have done in this section is essentially just notation. Now

there is a nice convergence of notation with the Riemann integral: for any
differentiable function g on any interval [a, b], with a, b ∈ R and a ≤ b, we
have ∫ b

a

g′ = g(b)− g(a) =

∫ b

a

dg(x) =

∫ b

a

g′(x) dx (30.10)

Thus, ∫ b

a

g′(x) dx =

∫ b

a

g′. (30.11)

If f is any continuous function on [a, b] then by the fundamental theorem of
calculus there is a function F on [a, b] for which

F ′ = f.

Hence ∫ b

a

f =

∫ b

a

F ′ =

∫ b

a

F ′(x) dx =

∫ b

a

f(x) dx.

Thus we have, finally, a complete identification of the Riemann integral as
the integral of a differential form:∫ b

a

f =

∫ b

a

f(x) dx. (30.12)

The Riemann integral is rooted in ideas going back to Archimedes’ compu-
tation of areas. The notation of differentials was invented in the 1600s by
Leibniz, but a precise development of differential forms (in higher dimen-
sions) was done only in the early 20th century by Élie Cartan. The equality
(30.12) is, for us, a theorem (an easy consequence of the fundamental theo-
rem of calculus, as we have seen) but traditionally (30.12) is viewed simply
as different notation for the same integral.

30.3 Using the fundamental theorem

Let us start with a simple example. We will work out the integral∫ 1

0

x dx.
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By Theorem 30.1.2, if we can find a function g for which g′(x) = x on [0, 1]

then we can easily determine the value of the integral
∫ 1

0
x dx as g(1)− g(1).

We can easily find a function g for which

g′(x) = x

for all x ∈ R. Just recall that

(x2)′ = 2x,

and so
d(x2/2)

dx
=

1

2
2x = x.

Then by Theorem 30.1.2 we have∫ 1

0

x dx =

∫ 1

0

(x2/2)′ dx =
x2

2

∣∣∣1
0

=
12

2
− 02

2
=

1

2
.

Geometrically, this is the area under the graph of

y = x

over x ∈ [0, 1]. This is just a rght angled triangle with base 1 and height 1,
and so its area is indeed (1/2)1 · 1 = 1/2.

Next consider the area under the parabola

y = x2

over x ∈ [a, b], where a, b ∈ R with a ≤ b. The area is∫ b

a

x2 dx.

We need to find a function whose derivative is x2. Recall that

(x3)′ = 3x2

and so
(x3/3) = x2.

Therefore
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x

y

a b

y = x2

∫ b
a
x2 dx = b3

3
− a3

3

Figure 30.2: Area below y = x2 for x ∈ [a, b]

∫ b

a

x2 dx =

∫ b

a

(x3/3)′ dx
Thm.30.1.2

=
x3

3

∣∣∣b
a

=
b3

3
− a3

3
.

Archimedes amazing determination of areas assocated with parabolas has
thus been reduced to a simple routine calculation.

Next consider the area under

y = sinx x ∈ [0, π].

x

y

π

y = sinx∫ π
0

sinx dx = 2

Figure 30.3: Area below y = sinx for x ∈ [0, π]

The area is∫ π

0

sinx dx =

∫ π

0

(− cosx)′ dx

= − cosx
∣∣∣π
0

= (− cosπ)− (− cos 0) = (−(−1))− (−1)

= 2.

(30.13)
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30.4 Indefinite integrals

With the examples of the previous section, it is clear that the task of finding
a a function g whose derivative g′ is a given function f is crucial to computing
integrals exactly. The indefinite integral of a function f is the general function
g for which

g′ = f.

The indefinite integral is denoted∫
f(x) dx,

or with t or some other ‘dummy variable’ in place of x.
For example, we know that

(x3/3)′ = x2.

If g(x) is any function whose derivative is also x2 then

d
(
g(x)− x3

3

)
dx

= g′(x)− x2 = 0,

and, assuming we are working over R (or any interval), it follows that

g(x)− x3

3
= constant.

Denoting this ‘arbitrary constant’ by C we have

g(x) =
x3

3
+ C.

Thus we have the indefinite integral of x2:∫
x2 dx =

x3

3
+ C,

where C is an arbitrary constant. The presence of this arbitrary constant
ensures that we have the ‘general’ solution to the problem of finding a func-
tion whose derivative is x2, not just one special choice. Of course, since the
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difference between two such solutions is just a constant, it is not a matter of
great importance.

In general, in mathematics it is not good practice to use ambiguous no-
tation, but writing ∫

f(x) dx

for not one function but for the class of all functions with derivative f(x) is
worth the occasional discomfort caused by the ambiguity.

If a differential form Phi is expressed as

Φ = f(x) dx

then we have the integral of Φ∫
Φ

def
=

∫
f(x) dx.

Thus an integral of a differential form Φ is a function g for which

dg = Φ.

Such integrals are of great interest and use in higher dimensions.
For any integer n, except for n = −1,∫

xn dx =
xn+1

n+ 1
+ C, (30.14)

with C being an arbitrary constant, as you can readily check by differentiating
xn+1/(n+ 1):

(
xn+1/(n+ 1) + C

)′
=

(n+ 1)xn

n+ 1
= xn.

What if n = −1? Then we are seeking a function g(x) whose derivative is
1/x:

g′(x) =
1

x
.

Recall that

log′ t =
1

t
for t ∈ (0,∞).
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Thus we can write ∫
1

x
dx = log x+ C, (30.15)

for any arbitary constant C, provided we restrict the functions all to the
positive ray (0,∞).

Is there a function defined for negative values of x with derivative 1/x?
It is easily checked that

d log(−x)

dx
= [log′(−x)] · (−1) =

1

−x
(−1) =

1

x
for x ∈ (−∞, 0).

Thus sometimes it is convenient to use the combined formula

log |x|+ C

for the indefinite integral of 1/x. However, log x and log(−x) do not really
splice together naturally, and not simply because of the necessary gap at
x = 0. A full exploration of this would require going into the complex plane,
a subject well beyond our objectives.

30.5 Revisiting the exponential function

Historically the logarithm log was invented before the exponential function.
However, mathematically, it seems more natural to develop the exponential
function ex first and then define log as the inverse function. This is essentially
what we have done, except that we never really defined ex in a logically
connected way. In section 26.5 we devloped the properties of ex by assuming
that there is a function exp on R with the following two properties:

exp′ = exp

exp(0) = 1.
(30.16)

Using this assumption we proved that

exp(x) = ex for all x ∈ R,

where

e = exp(1).
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The function exp has a strictly positive derivative, which implies that it has
an inverse function. We defined log to be the inverse function of exp, defining
log a to be the unique real number for which

elog a = a,

with log a being defined for all a ∈ (0,∞). Then we showed that

log′ x =
1

x
for all x ∈ (0,∞).

Having developed integration theory we are not at a point where we can
turn this logical development on its head (thereby regaining the correct, if
strange, historical development) by defining the function log directly as

log a =

∫ a

1

1

x
dx for all a ∈ (0,∞). (30.17)

Since 1/x is continuous on (0,∞), the fundamental theorem of calculus
guarantees that the integral defining log a exists and is finite; moreover it
also assures us that

log′ a =
1

a
for all a ∈ (0,∞). (30.18)

This derivative being strictly positive, log has an inverse function, call it exp.
Its derivative is (by Proposition 24.1.1):

exp′(y) =
1

log′ x
,

where y = log x, and so

exp′(y) =
1

1/x
= x = exp(y).

Moreover, the definition of exp as inverse of log along with the simple fact
that

log(1) = 0

shows that
exp(0) = 1.

Thus exp is indeed a function satisfying both conditions in (30.16), making
the development of both exp and log logically complete.
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Chapter 31

Riemann Sum Examples

In this chapter we work out some Riemann sums and compare them with the
corresponding integrals.

31.1 Riemann sums for
∫ N

1
dx
x2

Let N be a an integer > 1. Consider the partition of [1, N ] given by

P = {1, 2, . . . , N}.

This breaks up [1, N ] into N − 1 intervals, each of width 1:

[1, 2], [2, 3] . . . , [N − 1, N ].

The k-th interval has the form

[k, k + 1].

We will work out the upper and lower Riemann sums for 1/x2 relative to
P . On the interval

[k, k + 1]

the highest value of 1/x2 is 1/k2 and the lowest value is 1/(k+ 1)2. The area
of the k-th lower rectangle is therefore

area of k-th lower rectangle =
1

(k + 1)2
· 1,

257
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because its width is 1. Similarly

area of k-th upper rectangle =
1

k2
· 1.

Hence the lower sum is

L(1/x2, P ) =
N−1∑
k=1

1

(k + 1)2
· 1 =

1

22
+

1

32
+ · · ·+ 1

N2
.

Similarly, the upper sum is

U(1/x2, P ) =
N−1∑
k=1

1

k2
· 1 =

1

12
+

1

22
+ · · ·+ 1

(N − 1)2
.

The actual integral ∫ N

1

1

x2
dx

lies between these value:

L(1/x2, P ) ≤
∫ N

1

1

x2
dx ≤ U(1/x2, P ). (31.1)

The upper and lower sums are not really very good approximations to the
value of the intergal because they are separated by quite a bit:

U(1/x2, P )− L(1/x2, P ) =
1

12
− 1

N2
= 1− 1

N2
,

which tends to 1 as N →∞.
We can work out the integral of 1/x2 using the fundamental theorem of

calculus: ∫ N

1

dx

x2
=

∫ N

1

d

(
−1

x

)
= − 1

N
−
(
−1

1

)
= 1− 1

N
.

Using this in (31.1) produces:

1

22
+

1

32
+ · · ·+ 1

N2
≤ 1− 1

N
≤ 1

12
+

1

22
+ · · ·+ 1

(N − 1)2
. (31.2)
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We can extract some information from this by focusing on the first inequality:

sN
def
=

1

22
+

1

32
+ · · ·+ 1

N2
≤ 1− 1

N
. (31.3)

This is true for all integers N ∈ {2, 3, . . .}. Observe that the sequence of
sums s1, s2, ... increases in value as additional terms are added on:

s1 < s2 < s3 < · · ·

Therefore, there is a limit

lim
N→∞

sN = sup
N∈{2,3,...}

sN .

From (31.3) we see that
lim
N→∞

≤ 1.

Thus,

lim
N→∞

[
1

22
+

1

32
+ · · ·+ 1

N2

]
≤ 1.

This limit is displayed as an ‘infinite series sum’:

1

22
+

1

32
+ · · ·

Since the value of this is finite (being ≤ 1) the value of

1

12
+

1

22
+

1

32
+ · · ·

is also finite, having value ≤ 2. One says that the series∑
n

1

n2
=

1

12
+

1

22
+

1

32
+ · · · (31.4)

converges.
The convergence of the series above can be seen in other ways, but the

method using the integral
∫

1/x2 dx is useful for other similar sums as well.
The actual value of the sum (31.4) can be computed by more advanced

methods; the amazing result is

1

12
+

1

22
+

1

32
+ · · · = π2

6
. (31.5)
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This identity was established by Euler in 1735.
Observe that

lim
t→∞

∫ t

1

dx

x2
= lim

t→∞

[
1− 1

t

]
= 1.

We can interpret this to mean that the area under the graph

y =
1

x2

all the way over [1,∞) is 1: ∫ ∞
1

dx

x2
= 1, (31.6)

where we are taking the integral
∫∞

1
on the left side to mean the limit of

∫ t
1

as t→∞.

31.2 Riemann sums for 1/x

For the partition

P = {1, 2, . . . , N}

of [1, N ], where N is any integer > 1, and the function 1/x we have the lower
sum

L(1/x, P ) =
1

2
· 1 + · · ·+ 1

N
· 1

and the upper sum

U(1/x, P ) =
1

1
· 1 +

1

2
· 1 + · · ·+ 1

N − 1
· 1.

The exact integral, which lies between these sums, is∫ N

1

dx

x
= log(x)

∣∣∣N
1

= log(N)− log(1) = log(N).

Hence

1

2
· 1 + · · ·+ 1

N
· 1 ≤ logN ≤ 1

1
· 1 +

1

2
· 1 + · · ·+ 1

N − 1
· 1. (31.7)
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Unlike what happened with 1/x2, we have an infinite area under the graph
of 1/x over [1,∞):∫ ∞

1

dx

x
def
= lim

t→∞

∫ t

1

dx

x
= lim

t→∞
log(t) =∞. (31.8)

Looking back to the second inequality in (31.7) we have

lim
N→∞

[
1

1
+

1

2
+ · · ·

]
≥ lim

N→∞
log(N) =∞,

and so
∞∑
n=1

1

n
=

1

1
+

1

2
+

1

3
+ · · · =∞. (31.9)

The series
∑∞

n=1 is called the harmonic series and the fact that the sum is
∞ is expressed by saying that series is divergent.

The difference between the upper sum and the integral over [1, N ] is

N−1∑
k=1

1

k
− log(N).

It turns out that this has a finite limit as N →∞:

γ = lim
N→∞

[
1

1
+

1

2
+ · · ·+ 1

N
− log(N)

]
, (31.10)

called Euler’s constant.

31.3 Riemann sums for x

We focus on the function given by f(x) = x on [0, 1].
Let N be a an integer > 1. Consider the partition of [0, 1] given by

P =

{
0,

1

N
, . . . ,

N

N

}
.

This breaks up [0, 1] into N intervals, each of width 1:[
0,

1

N

]
,

[
1

N
,

2

N

]
. . . ,

[
N − 1

N
,
N

N

]
.
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The k-th interval has the form [
k − 1

N
,
k

N

]
.

We will work out the upper and lower Riemann sums for the function x
relative to P . On the interval [

k − 1

N
,
k

N

]
the sup of x is just k

N
and the inf is k−1

N
.

The area of the k-th lower rectangle is therefore

area of k-th lower rectangle =
k − 1

N
· 1

N

because its width is 1. Similarly

area of k-th upper rectangle =
k

N
· 1

N
.

Hence the lower sum is

L(x, P ) =
N∑
k=1

k − 1

N
· 1

N

=
1

N

[
0 +

1

N
+

2

N
+ · · ·+ N − 1

N

]
=

1

N2
[1 + 2 + · · ·+ (N − 1)] .

(31.11)

Similarly, the upper sum is

U(x, P ) =
N∑
k=1

k

N
· 1

N

=
1

N

[
1

N
+

2

N
+ · · ·+ N

N

]
=

1

N2
[1 + 2 + · · ·+N ] .

(31.12)

The integral ∫ 1

0

x dx
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lies between these value:

L(x, P ) ≤
∫ 1

0

x dx ≤ U(x, P ). (31.13)

Observe that U(x, P ) differs from L(x, P ) by the term 1
N2N :

U(x, P )− L(x, P ) =
1

N
→ 0 as N →∞.

This implies that there can be only one number lying between the upper
sums and the lower sums and hence that the integral∫ 1

0

x dx

exists and ∫ 1

0

x dx = lim
N→∞

1

N2
[1 + 2 + · · ·+N ] .

Now we use the sum formula (see (31.24) below):

1 + 2 + · · ·+N =
N(N + 1)

2
. (31.14)

Hence∫ 1

0

x dx = lim
N→∞

1

N2

N(N + 1)

2
= lim

N→∞

1

N2

N ·N(1 + 1/N)

2
= lim

N→∞

(1 + 1/N)

2
.

Hence ∫ 1

0

x dx =
1

2
. (31.15)

This result is, of course, far easier to see using the fundamental theorem of
calculus: ∫ 1

0

x dx =

∫ 1

0

(
1

2
x2

)′
dx =

x2

2

∣∣∣1
0

=
1

2
. (31.16)
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31.4 Riemann sums for x2

We focus on the function given by f(x) = x2 on [0, 1].
Let N be a an integer > 1. We work with the partition of [0, 1] given by

P =

{
0,

1

N
, . . . ,

N

N

}
.

The k-th interval marked off by this partition is[
k − 1

N
,
k

N

]
.

On the interval [
k − 1

N
,
k

N

]
the sup of x2 is just k2

N2 and the inf is (k−1)2

N2 .
The area of the k-th lower rectangle is therefore

area of k-th lower rectangle =
(k − 1)2

N2
· 1

N

because its width is 1. Similarly

area of k-th upper rectangle =
k2

N2
· 1

N
.

Hence the lower sum is

L(x2, P ) =
N∑
k=1

(k − 1)2

N2
· 1

N

=
1

N

[
02

N2
+

12

N2
+

22

N2
+ · · ·+ (N − 1)2

N2

]
=

1

N3

[
12 + 22 + · · ·+ (N − 1)2

]
.

(31.17)

Similarly, the upper sum is

U(x2, P ) =
N∑
k=1

k2

N2
· 1

N

=
1

N

[
12

N2
+

22

N2
+ · · ·+ N2

N2

]
=

1

N3

[
12 + 22 + · · ·+N2

]
.

(31.18)
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The integral ∫ 1

0

x2 dx

lies between these value:

L(x2, P ) ≤
∫ 1

0

x2 dx ≤ U(x2, P ). (31.19)

The upper sum U(x2, P ) differs from the lower sum L(x2, P ) by 1
N3N

2:

U(x2, P )− L(x2, P ) =
1

N
→ 0 as N →∞.

Hence there can be only one number lying between the upper sums and the
lower sums and so the integral ∫ 1

0

x2 dx

exists and ∫ 1

0

x2 dx = lim
N→∞

1

N3

[
12 + 22 + · · ·+N2

]
.

We now need the sum formula (see (31.31) below):

12 + 22 + · · ·+N2 =
N(N + 1)(2N + 1)

6
. (31.20)

Hence∫ 1

0

x2 dx = lim
N→∞

1

N3

N(N + 1)(2N + 1)

6
= lim

N→∞

1

N3

N ·N(1 + 1/N)N(2 + 1/N)

6

= lim
N→∞

(1 + 1/N)(2 + 1/N)

6

=
1

3
.

(31.21)

Hence ∫ 1

0

x2 dx =
1

3
. (31.22)

This, of course, agrees with the result using the fundamental theorem of
calculus: ∫ 1

0

x2 dx =

∫ 1

0

(
1

3
x3

)′
dx =

x3

3

∣∣∣1
0

=
1

3
. (31.23)
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31.5 Power sums

We will work out a few power sum formulas, starting with

1 + 2 + · · ·+N =
N(N + 1)

2
. (31.24)

There are several ways of proving this formula. Let

S1 = 1 + 2 + · · ·+N.

Writing the same sum backwards we have:

S1 = 1 + 2 + · · ·+ (N − 1) + N

S1 = N + (N − 1) + · · ·+ 2 + 11
(31.25)

In the first equation above the terms on the right increase by 1 at each step
whereas in the second equation the terms decrease by 1 at each stage. Adding
them we have

2S1 = (N + 1) + (N + 1) + · · ·+ (N + 1) = N(N + 1).

Hence

S1 =
N(N + 1)

2
.

Here is a second, longer and far less appealing method. We start with

(a+ 1)2 = a2 + 2a+ 1

which implies
(a+ 1)2 − a2 = 2a+ 1.

Now use a = 1, through a+N in this to obtain:

22 − 12 = 2 ∗ 1 + 1

32 − 22 = 2 ∗ 2 + 1

...
...
...

...

(N + 1)2 −N2 = 2 ∗N + 1

(31.26)

Adding all these up we see that on the left all terms cancel except for the
very first one −12 and the very last one (N + 1)2:

(N + 1)2 − 11 = 2 ∗ [1 + 2 + · · ·+N ]︸ ︷︷ ︸
S1

+N ∗ 1.
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Hence

2S1 = (N+1)2−1−N = (N+1)2−(N+1) = (N+1−1)(N+1) = N(N+1),

which implies

S1 =
N(N + 1)

2
. (31.27)

The advantage of this method is that it works for sums of higher powers. We
use this method to find the sum

S2 = 12 + 22 + · · ·+N2. (31.28)

We start now with

(a+ 1)3 = a3 + 3a2 + 3a+ 1

from which we have

(a+ 1)3 − a3 = 3a2 + 3a+ 1.

Using a = 1 through a = N in this produces

23 − 13 = 3 ∗ 12 + 3 ∗ 1 + 1

33 − 23 = 3 ∗ 22 + 3 ∗ 2 + 1

...
...
...

...

(N + 1)3 −N3 = 3 ∗N2 + 3 ∗N + 1.

(31.29)

When we add these up on the left everything cancels except the very first
term −13 and the very last term (N + 1)3, and we have:

(N + 1)3 − 13 = 3 ∗
[
12 + 22 + · · ·+N2

]︸ ︷︷ ︸
S2

+3 [1 + 2 + · · ·+N ]︸ ︷︷ ︸
S1

+N ∗ 1.

Hence

3S2 = (N + 1)3 − 1− 3S1 −N
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Using the formula (31.27) we have

3S2 = (N + 1)3 − 1−N − 3S1

= (N + 1)3 − (N + 1)− 3
N(N + 1)

2

= (N + 1)

[
(N + 1)2 − 1− 3N

2

]
= (N + 1)

[
N2 + 2N + 1− 1− 3N

2

]
= (N + 1)

[
N2 +

N

2

]
= (N + 1)N [N +

1

2
]

= (N + 1)N
(2N + 1)

2
.

(31.30)

Hence

S2 =
N(N + 1)(2N + 1)

6
. (31.31)

Applied to the sum of the cubes this strategy produces

13 + 23 + · · ·+N3 =

[
N(N + 1)

2

]2

. (31.32)

Amazingly, this is just the square of the sum S1:

13 + 23 + · · ·+N3 = [1 + 2 + · · ·+N ]2 . (31.33)



Chapter 32

Integration Techniques

In this chapter we study some techniques for working out indefinite integrals.
What this means is that we are given a function f(x) and we have to find a
function g(x) for which

dg(x) = f(x)dx.

Since dg(x) is g′(x)dx this means finding a function g whose derivative if f :

g′(x) = f(x).

We write the general such function as the indefinite integral

g(x) =

∫
f(x) dx.

Here f(x) is called the integrand.

32.1 Substitutions

For the integral ∫
(x+ 1)5 dx

it would be a long and slow method to work out the fifth power and then
integrate. Instead we substitute y for x+ 1 and rewrite the integral in terms
of y:

y = x+ 1

269
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Then
dy = 1 dx

and so ∫
(x+ 1)5 dx =

∫
y5 dy =

1

6
y6 + C =

1

6
(x+ 1)6 + C,

where C is an arbitrary constant.
The essence of the idea behind the substitution method is simple. We

inspect the integral ∫
f(x) dx

and write it in the form ∫
F
(
p(x)

)
p′(x)dx,

for some functions F and p, and then substitute

y = p(x)

to transform the given integral as∫
f(x) dx =

∫
F
(
p(x)

)
p′(x)dx =

∫
F
(
p(x)

)
dp(x) =

∫
F (y) dy,

and, if al goes well, the integral
∫
F (y) dy is ‘simpler’ than what we started

with, thereby reducing
∫
f(x) dx to a simpler integral. The main challenge

is in identifying the functions F and p which express f(x) as F (p(x))p′(x).
As we will see below there are also some simple variations on this strat-

egy. For example, it may be easier to write f(x) as a constant multiple of
F (p(x))p′(x) or, in some cases, we can break up f(x) into a sum of pieces,
each of which is easier to work out separately.

Consider ∫
(2x− 5)3/5 dx.

We substitute
z = 2x− 5

which gives

dz = 2dx and so dx =
1

2
dz
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and so ∫
(2x− 5)3/5 dx =

∫
z3/5 1

2
dz =

1

2

∫
z

3
5 dz

=
1

2
∗ 1

3
5

+ 1
z

3
5

+1 + C

=
5

16
(2x− 5)8/5 + C,

where C is an arbitrary constant.
For ∫

(4− 3x)2/7 dx

the substitution would be
y = 4− 3x

which leads to

dy = −3dx and so dx = −1

3
dy

which then transforms the given integral as follows:

∫
(4− 3x)2/7 dx =

∫
y2/7

(
−1

3
dy

)
= −1

3

∫
y2/7 dy

= −1

3
∗ 1

2
7

+ 1
y

2
7

+1 + C

= − 7

27
(4− 3x)

2
7

+1 + C,

where C is an arbitrary constant.
Sometimes the integrand should be reworked a bit before or after the

substitution is made. For example, for∫
x(3− 4x)2/5 dx

we can substitute
y = 3− 4x (32.1)

for which

dy = −4dx so that dx = −1

4
dy,
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and then the given integral has the form∫
xy2/5

(
−1

4
dy

)
.

We need to replace the x in the integrand with its expression in terms of y
by solving (32.1):

x =
1

4
(3− y).

Then our integral becomes∫
1

4
(3− y)y2/5

(
−1

4
dy

)
= − 1

16

∫
(3− y)y2/5 dy.

The right side looks complicated but can be worked out by breaking up into
pieces:∫

(3−y)y2/5 dy = 3

∫
y2/5 dy−

∫
y · y2/5︸ ︷︷ ︸
y7/5

dy = 3
1

2
5

+ 1
y

2
5

+1− 1
7
5

+ 1
y7/5+1+constant

Now putting everything together we have∫
x(3− 4x)2/5 dx =

(
− 1

16

)
15

7
y7/5 −

(
− 1

16

)
5

12
y12/5 + C,

where C is an arbitrary constant and y is as in (32.1). Thus∫
x(3− 4x)2/5 dx = − 15

112
(3− 4x)2/5 +

5

192
(3− 4x)12/5 + C,

for any arbitrary constant C.
Moving on to more complicated integrands, consider∫

(x2 + 1)2/3x dx

Observe that xdx is about the same as d(x2 + 1), aside from a constant
multiple. The substitution is

y = x2 + 1.
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With this we have

dy = 2xdx and so xdx =
1

2
dy

which converts the given integral as follows:∫
(x2 + 1)2/3xdx =

∫
y2/3 1

2
dy =

1

2

∫
y2/3 dy =

1

2

1
2
3

+ 1
y

2
3

+1 + C,

where C is any constant. Rewriting in terms of x we have∫
(x2 + 1)2/3x dx =

3

10
(x2 + 1)5/3 + C.

Here is a faster display of this method:∫
(x2 + 1)2/3x dx =

∫
(x2 + 1)

2
3

1

2
d(x2 + 1)

=
1

2

1
2
3

+ 1
(x2 + 1)2/3+1 + C

=
3

10
(x2 + 1)5/3 + C.

The same strategy works for more complicated integrands. For example,
for ∫

(3x2 − 12x+ 2)−7/3(x− 2) dx

observe again that (x− 2)dx is a constant multiple of d(3x2− 5x+ 2); so we
use

y = 3x2 − 12x+ 2

for which
dy = (6x− 12) dx = 6(x− 2)dx

and this transforms the given integral as follows:∫
(3x2 − 12x+ 2)−7/3(x− 2) dx =

∫
y−7/3 1

6
dy =

1

6

∫
y−7/3 dy,

which integrates out to∫
(3x2−12x+2)−7/3(x−2) dx =

1

6

1

−7
3

+ 1
y−

7
3

+1+C = −1

8
(3x2−12x+2)−

4
3 +C,
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for any arbitrary constant C.
Sometimes the substitution is not as obvious as in the preceding (manu-

factured) example. Consider ∫
x√
x2 + 1

dx.

Observe that the numerator is x, which is constant times the dervative of
x2 + 1. So we use

u = x2 + 1

for which
du = 2xdx

and so ∫
x√
x2 + 1

dx =

∫ 1
2
du
√
u

=

∫
1

2
√
u
du =

√
u+ C,

where C is an arbitrary constant; thus,∫
x√
x2 + 1

dx =
√
x2 + 1 + C. (32.2)

Similarly,∫
x√

3− 2x2
dx =

∫ −1
4
d(3− 2x2)
√

3− 2x2
dx

= −1

2

∫
du

2
√
u

with u = 3− 2x

= −1

2

√
u+ C

= −1

2

√
3− 2x2 + C,

(32.3)

where C is an arbitrary constant.
Substitutions need not be limited to polynomials or algebraic functions.

For ∫
dx

x log x

we observe the x in the denominator and recall that d log x = 1/x; so we
rewrite the integral as∫

dx

x log x
=

∫ 1
x
dx

log x
=

∫
d(log x)

log x
= log(log x) + C,
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for any arbitrary constant C.
Similarly,∫

dx

x(log x)2/3
=

∫
d(log x)

(log x)2/3
=

∫
(log x)−2/3 d(log x) =

1

−2
3

+ 1
(log x)−

2
3

+1+C,

where C is the arbitrary constant.
Here is an example with trigonometric functions:∫

sinx cosx dx =

∫
sinx d(sinx) =

1

2
sin2 x+ C, (32.4)

where C is an arbitrary constant. We can do the same integral using the
substitution cosx instead:∫

sinx cosx dx =

∫
cosx sinx dx = −

∫
cosx d(cosx) = −1

2
cos2 x+ C1,

(32.5)
where C1 is an abitrary constant. For the first time we have now denoted
the arbitrary constant by C1 instead of C and this is the first time we face
a possible pitfall of the ambiguity in the meaning of the indefinite integral.
Observe that

sin2 x = 1− cos2 x

transforms the first expression (32.4 ) for
∫

sinx cosx dx into

1

2
(1− cos2 x) + C = −1

2
cos2 x+

1

2
+ C,

and this agrees with (32.5) on taking C1 to be C + 1/2.
Here is a slightly more involved example of this type of substitution:∫

sin6 x cosx dx =

∫
sin6 x d(sinx) =

1

7
sin7 x+ C, (32.6)

where C is an arbitrary constant.
We can take this a step beyond, with∫

sin4 x cos7 x dx.

We write this as∫
sin4 x cos6 x cosx dx =

∫
sin4 x cos6 x d(sinx).
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Now we make a key observation: the 6-th power cos6 x can be written as

cos6 x = (cos2 x)3 = (1− sin2 x)3.

This brings us to∫
sin4 x cos7 x dx =

∫
sin4 x(1− sin2 x)3 d(sinx).

Now we can use the substitution

y = sinx

to transform the given integral to∫
y4(1− y2)3 dy.

Here we have the integral of a polynomial and though it is a lengthy write-up
the integration is routine:∫

y4(1− y2)3 dy =

∫
y4(1− 3y2 + 3y4 − y6) dy

=

∫
(y4 − 3y6 + 3y8 − y10) dy

=
1

5
y5 − 3

7
y7 +

3

9
y9 − 1

11
y11 + C,

where C is the arbitrary constant; substituting back sinx for y produced the
complete integral:∫

sin4 x cos7 x dx =
1

5
sin5 x− 3

7
sin7 x+

3

9
sin9 x− 1

11
sin11 x+ C.

32.2 Some trigonometric integrals

As starting point we have the integrals∫
sinx dx = − cosx+ C1∫
cosx dx = sinx+ C2

(32.7)
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where C1 and C2 are arbitrary constants.
Next up we have the simplest substitutions:∫

sin(3x) dx =

∫
sin(3x)

(
1

3
d(3x)

)
=

1

3

∫
sin(3x) d(3x) = −1

3
cos(3x) +C

and, similarly, ∫
cos(5x) dx =

1

5
sin(5x) + C ′,

with C and C ′ being arbitrary constants.
Our next objective is to work out integrals of the form∫

sin(Ax) cos(Bx), dx

and other such integrals of products of trigonometric functions.
The key strategy is the use of the trigonometric sum formulas such as

sin(a+ b) = sin a cos b+ sin b cos a

sin(a− b) = sin a cos b− sin b cos a
(32.8)

Adding these we get

sin(a+ b) + sin(a− b) = 2 sin a sin b,

and so

sin a cos b =
1

2
[sin(a+ b) + sin(a− b)] . (32.9)

Thus

sin(3x) cos(7x) =
1

2
[sin(10x) + sin(−4x)] =

1

2
[sin(10x)− sin(4x)] .

Integrating, we obtain∫
sin(3x) cos(7x) dx =

1

2

[
− 1

10
cos(10x) +

1

4
cos(4x)

]
+ C,

where C is any constant.
The sum formula method works for other trigonometric products. For

these, recall

cos(a+ b) = cos a cos b− sin a sin b

cos(a− b) = cos a cos b+ sin a sin b.
(32.10)
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Adding we get

cos(a+ b) + cos(a− b) = 2 cos(a) cos(b),

and subtracting we get

cos(a− b)− cos(a+ b) = 2 sin a sin(b).

Hence

cos a cos b =
1

2
[cos(a+ b) + cos(a− b)]

sin a sin b =
1

2
[cos(a− b)− cos(a+ b)] .

(32.11)

Using these we have∫
cos(3x) cos(5x) dx =

1

2

∫
[cos(8x) + cos(2x)] dx (note that cos(−2x) = cos(2x))

=
1

2

[
1

8
sin(8x) +

1

2
sin(2x)

]
+ C

(32.12)

for any constant C.
Similarly,

∫
sin(2x) sin(6x) dx =

1

2

∫
[cos(4x)− cos(8x)] dx (note that cos(−4x) = cos(4x))

=
1

2

[
1

4
sin(4x) +

1

8
sin(8x)

]
+ C

(32.13)

for any constant C.
We can apply this even to ∫

sin2 x dx,

viewing the integrand as the product sinx sinx:

sin2 x = sinx sinx =
1

2
[cos(0)− cos(2x)] =

1

2
[1− cos(2x)] ,
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from which we have∫
sin2 x dx =

1

2

∫
[1− cos(2x)] dx

=
1

2

[
x− 1

2
sin(2x)

]
+ constant.

=
x

2
− 1

4
sin(2x) +

1

2
+ C,

(32.14)

where C is an arbitrary constant. Using the formula

sin(2x) = sinx cosx

we an rewrite the above integral also as:∫
sin2 x dx =

x

2
− 1

2
sinx cosx+ C.

Similarly for cos2 x we have

cos2 x = cosx cosx =
1

2
[cos(0) + cos(2x)] =

1

2
[1 + cos(2x)],

which leads to ∫
cos2 x dx =

1

2

[
x+

1

2
sin(2x)

]
. (32.15)

We can use the sum-formula strategy multiple times. For example,

sin(5x) sin(3x) cos(4x) =
1

2
[cos(2x)− cos(8x)] cos(4x)

=
1

2
[cos(2x) cos(4x)− cos(8x) cos(4x)]

=
1

2

[
1

2
[cos(6x) + cos(2x)]− 1

2
[cos(12x) + cos(4x)]

]
=

1

4
[cos(6x) + cos(2x)− cos(12x)− cos(4x)]

(32.16)

from which we have∫
sin(5x) sin(3x) cos(4x) dx =

1

4

[
1

6
sin(6x) +

1

2
sin(2x)− 1

12
sin(12x)− 1

4
sin(4x)

]
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32.3 Summary of basic trigonometric integrals

Let us recall the following derivatives

sin′ x = cosx

cos′ x = − sinx

tan′ x = sec2 x

csc′ x = − cscx cotx

sec′ x = secx tanx

cot′ x = − csc2 x.

(32.17)

These invert to give the following integrals:

∫
cosx dx = sinx+ C∫
sinx dx = − cosx+ C∫

sec2 x dx = tanx∫
cscx cotx dx = − cscx∫

secx tanx dx = secx+ C∫
csc2 x. dx = − cotx+ C.

(32.18)

Some natural entries are missing from this list. For instance,

tanx dx.

This integral can be worked out by observing that in∫
tanx dx =

∫
sinx

cosx
dx,

the numerator sinx is minus the derivative of the denominator cos x. So we
use the substitution

y = cosx
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which gives
dy = − sinx dx

and so

tanx dx =

∫
−dy
y

= −
∫
dy

y
= − log y + C,

and so ∫
tanx dx = − log cosx+ C.

Since

− logA = log
1

A
,

we can also write the integral as∫
tanx dx = log(sec x) + C. (32.19)

If we are working over an interval on which secx is negative we should use
the absolute value form:∫

tanx dx = log(secx) + C.

(In complex analysis the correct integral is (32.19).)
The integral ∫

secx dx

is also of interest. There is no natural method for this integral that leads
to the value in its simplest form. The following tricky method is based on
already happening on the correct answer by accident:∫

secx dx =

∫
secx(secx+ tanx)

secx+ tanx
dx

=

∫
sec2 x+ secx tanx

secx+ tanx
dx

(32.20)

and here we make the remarkable observation that the numerator is the
derivative of the denominator:

(secx+ tanx)′ = secx tanx+ sec2 x = secx(secx+ tanx),
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and so we use the subtitution

y = secx+ tanx.

Then, as we just observed,

dy = (secx)y dx,

and so

secx dx =
dy

y
,

from which we have ∫
secx dx =

∫
dy

y
= log y + C.

Thus ∫
secx dx = log(secx+ tanx) + C. (32.21)

Again, we can use log | · · · | if sec x+ tanx is negative.

32.4 Using trigonometric substitutions

For the integral ∫
dx√

1− x2

the best substitution is

x = sin θ.

This means we are setting θ to be an inverse sin of x; for definiteness we can
set

θ = sin−1(x),
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which restricts θ to [−π/2, π/2]. Then∫
dx√

1− x2
=

∫
cos(θ) dθ√
1− sin2 θ

=

∫
cos(θ) dθ√

cos2 θ
(which shows why we use x = sin θ)

=

∫
cos θ dθ

cos θ
(here we use cos θ ≥ 0 for θ ∈ [−π/2, π/2].)

=

∫
dθ

= θ + C

= sin−1 x+ C,

(32.22)

where C is an arbitrary constant. We have seen before that

d sin−1(x)

dx
=

1√
1− x2

,

which confirms the integration result.
A similar integral is ∫

dx

1 + x2
.

Here the best substitution is
x = tan θ

for which both
dx = sec2 θ dθ

and
1 + x2 = 1 + tan2 θ = sec2 θ,

which simplied the integral:∫
dx

1 + x2
=

∫
sec2 θ dθ

sec2 θ
=

∫
θ = θ + C = tan−1 x+ C,

for any arbitrary constant C.
More involved is ∫ √

1− x2 dx.
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When we substitute

x = sin θ

and

dx = cos θ dθ

we obtain∫ √
1− x2 dx =

∫ √
1− sin2 θ cos θ dθ =

∫ √
cos2 θ cos θ dθ (32.23)

and here again we have the annoying fact that (at least working with real
numbers) √

cos2 θ = | cos θ|.

We get past this bit of unpleasantness by requiring that

θ = sin−1 x ∈ [−π/2, π/2],

which ensures that

cos θ ≥ 0

and so √
cos2 θ = cos θ.

Returning to the integration (32.23) we have∫ √
1− x2 dx =

∫
cos θ cos θ dθ =

∫
cos2 θ dθ.

Looking back at (32.15) we have then∫ √
1− x2 dx =

1

2

[
θ +

1

2
sin(2θ)

]
+ C,

where C is an arbitrary constant. We have to substitute back in θ = sin−1 x.
Before doing this observe that

sin(2θ) = 2 sin θ cos θ

and so, since

sin θ = x and cos θ =
√

1− x2,
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we conclude that∫ √
1− x2 dx =

1

2

[
sin−1 x+ x

√
1− x2

]
+ C. (32.24)

Sometimes we need to do some algebra before using a trigonometric sub-
stitution. Consider for example∫ √

−4x2 + 12x− 6 dx.

It is best to work the term inside the
√
· · · into a ‘completed squares’ form;

for convenience we work with the negative so that the coefficient of x2 is
positive:

4x2 − 12x+ 6 = (2x)2 − 2 ∗ (2x) ∗ 3 + 32 − 32 + 6

= (2x− 3)2 + [6− 32] (using (A−B)2 = A2 − 2AB +B2)

= (2x− 3)2 − 3.

(32.25)

Thus
−4x2 + 12x− 6 = 3− (2x− 3)2,

and so ∫ √
−4x2 + 12x− 6 dx =

∫ √
3− (2x− 3)2 dx.

Once we have this form we need to observe that this looks roughly like
(32.23). We could now use a sin substitution. Alternatively, we can make
the similarity with (32.23) greater by substituting

2x− 3 =
√

3y, (32.26)

which ensures that

− 4x2 + 12x− 6 = 3− (2x− 3)2 = 3− 3y2 = 3(1− y2), (32.27)

and
2 dx =

√
3 dy.

So∫ √
−4x2 + 12x− 6 dx =

∫ √
3(1− y2)

√
3

2
dy =

√
3

2

√
3

∫ √
1− y2 dy.
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Using (32.24) we have then∫ √
−4x2 + 12x− 6 dx =

3

2

1

2

[
sin−1 y + y

√
1− y2

]
+ C.

Substituting in the value of y from (32.26) yields the complete answer. The
algebra can be made nicer by observing that

3

2

1

2

[
sin−1 y + y

√
1− y2

]
=

1

4

[
sin−1 y + 3y

√
1− y2

]
=

1

4

[
sin−1 y +

√
3y
√

3(1− y2)
]

=
1

4

[
sin−1

(
2x− 3√

3

)
+ (2x− 3)

√
−4x2 + 12x− 6

]
(32.28)

where in the final step we used (32.27) and the value of y from (32.26).

32.5 Integration by parts

The product rule for derivatives is

d(UV ) = UdV + V dU,

and so ∫
d(UV ) =

∫
UdV +

∫
V dU,

provided we line up the ‘arbitrary’ constants appropriately. Then∫
U dV = UV −

∫
V dU.

This often helps in simplifying integrals, and is called the integration by parts
formula or method.

For example, ∫
log x dx = (log x)x−

∫
x d(log x)

= x log x−
∫
x
dx

x

= x log x−
∫
dx

= x log x− x+ C.

(32.29)
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Thus, ∫
log x dx = x log x− x+ C, (32.30)

where C is an arbitrary constant.

Sometimes the choice of U and V requires some planning ahead:

∫
x log x dx =

1

2

∫
log x d(x2)

=
1

2
(log x)x2 − 1

2

∫
x2 d(log x)

=
1

2
(log x)x2 − 1

2

∫
x2dx

x

=
1

2
(log x)x2 − 1

2

∫
x dx

=
1

2
(log x)x2 − 1

6
x3 + C,

(32.31)

where C is an arbitrary constant.

We can apply this method to

∫
x sinx dx

as follows: ∫
x sinx dx = −

∫
x d(cosx)

= −
[
x(cosx)−

∫
cosx dx

]
= −x cosx+

∫
cosx dx

= −x cosx+ sinx+ C

(32.32)

where C is an arbitrary constant.
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Here is a considerable more involved use of integration by parts:∫
sec3 x dx =

∫
secx sec2 x dx

=

∫
secx d(tanx)

= secx tanx−
∫

tanx d(secx)

= secx tanx−
∫

tanx secx tanx dx

= secx tanx−
∫

secx tan2 x dx

= secx tanx−
∫

secx(sec2 x− 1) dx (using sec2 x = tan2 x+ 1)

= secx tanx−
∫

sec3 dx+

∫
secx dx

(32.33)

and at this stage it looks bad at first because we have ended up with
∫

sec3 x dx
again, on the right. But we are saved because there is a minus sign in front
of the integral on the right; we can move it to the left to get

2

∫
sec3 x dx = secx tanx+

∫
secx dx = secx tanx+log(sec x+tanx)+constant,

on using formula (32.21) for
∫

secx dx. Hence,

∫
sec3 x dx =

1

2
[secx tanx+ log(secx+ tanx)] + C, (32.34)

where C is an arbitrary constant. As usual, a real solution is also obtained if
secx+tanx on the right is negative by replacing this with its absolute value.

One other example of this type is∫
eAx sin(Bx) dx
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where A and B are non-zero constants. Then we have∫
eAx sin(Bx) dx = − 1

B

∫
eAx d (cos(Bx))

= − 1

B

[
eAx cos(Bx)−

∫
cos(Bx) d(eAx)

]
= − 1

B

[
eAx cos(Bx)−

∫
cos(Bx)AeAx dx

]
= − 1

B

[
eAx cos(Bx)− A

∫
cos(Bx) eAx dx

]
= − 1

B
eAx cos(Bx) +

A

B

∫
cos(Bx) eAx dx.

(32.35)

Now we run the same method on the integral
∫

cos(Bx) eAx dx:∫
eAx sin(Bx) dx = − 1

B
eAx cos(Bx) +

A

B

∫
eAx

(
1

B
d sin(Bx)

)
= − 1

B
eAx cos(Bx) +

A

B2

∫
eAx d sin(Bx)

= − 1

B
eAx cos(Bx) +

A

B2

[
eAx sin(Bx)−

∫
sin(Bx)deAx

]
= − 1

B
eAx cos(Bx) +

A

B2

[
eAx sin(Bx)−

∫
sin(Bx)AeAx dx

]
= − 1

B
eAx cos(Bx) +

A

B2
eAx sin(Bx)− A2

B2

∫
eAx sin(Bx) dx,

(32.36)

with our original integral reappearing on the right side, with a negative sign.
Keeping in mind that the integrals on the two sides might differ by a constant
we have:(

1 +
A2

B2

)∫
eAx sin(Bx) dx = − 1

B
eAx cos(Bx) +

A

B2
eAx sin(Bx) + constant.

Multiplying both sides by B2 gives

(A2 +B2)

∫
eAx sin(Bx) dx = −BeAx cos(Bx) + AeAx sin(Bx) + constant

= eAx [cos(Bx) + A sin(Bx)−B cos(Bx)] + constant

(32.37)
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Dividing by A2 +B2 produces, at last, the formula∫
eAx sin(Bx) dx = eAx

[
A sin(Bx)−B cos(Bx)

A2 +B2

]
+ C, (32.38)

where C is an arbitrary constant. We assumed A and B are both nonzero.
We can check easily that the formula works even if one of these two values
is 0.

Exercises on Integration by Substitution

1. Work out the following integrals using substitutions:

(a)
∫

(4− 3x)2/3 dx

(b)
∫ √

2 + 5x dx

(c)
∫

1√
2−3x

dx

(d)
∫
x(3− 2x)4/5 dx

(e)
∫

x
(2+5x)3/5

dx

(f)
∫

2x+1√
x2+x+5

dx

(g)
∫
e−x

2/2x dx

(h)
∫ √log(2x+5)

2x+5
dx

(i)
∫

1
x log(x) log(log x)

dx

(j)
∫

sin(5x) cos(2x) dx

(k)
∫

sin(5x) sin(2x) dx

(l)
∫

cos(5x) cos(2x) dx

(m)
∫

sin3 x dx

(n)
∫

cos3 x dx

(o)
∫

sin2(5x) dx

(p)
∫ √

3− 6x− x2 dx

(q)
∫

1√
3−6x−x2 dx



Chapter 33

Paths and Length

33.1 Paths

A path c in the plane R2 is a mapping

c : I → R2 : t 7→ c(t) =
(
xc(t), yc(t)

)
, (33.1)

where I is some interval in R. We can think of c(t) as being the position of
a point at time t.

In (33.1) we are denoting the x-coordinate of a point p by x(p):

x(p) = x-coordinate of a point p,

so that the x-coordinate of c(t) is x
(
c(t)
)
, which we write briefly as

xc(t).

Similarly, the y-coordinate of a point p is

y(p) = y-coordinate of a point p,

and the y-coordinate of c(t) is y
(
c(t)
)
, which we write briefly as yc(t).

As our first example, consider

c(t) = (t, 2t+ 1) for t ∈ R.

Think of this as a moving point, whose position at clock time t is (t, 2t+ 1);
see Figure 33.1.

291
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x

y

t 7→ c(t) = (t, 2t+ 1)
c(1.5) = (1, 4)

Figure 33.1: The path c : R→ R2 : t 7→ (t, 2t+ 1)

This is a point traveling at a uniform speed along a straight line. How fast
is it traveling? We can check how fast the x and y coordinates are changing:

c′(t) =
(
(xc)′(t), (yc)′(t)

)
=

(
dt

dt
,
d(2t+ 1)

dt

)
= (1, 2).

This is called the velocity of the path c at time t. Note that for this path the
velocity is the same, being (1, 2), at all times t.

Here is a different path that also travels along the same line, but with
increasing speed:

R→ R2 : t 7→ c(t) = (t2, 2t2 + 1).

This is displayed in Figure 33.2.

x

y

t 7→ c(t) = (t2, 2t2 + 1)

c(0.5) = (0.25, 1.5)

Figure 33.2: The path c : R→ R2 : t2 7→ (t, 2t2 + 1)

The velocity of this path at time t is

c′(t) = (2t, 4t),
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which is clearly changing as the clock time t changes.
The path

[0, 2π]→ R2 : t 7→
(
cos t, sin t)

traces out the unit circle counterclockwise exactly once, starting out at

(cos 0, sin 0) = (1, 0)

and ending also at
(cos 2π, sin 2π) = (1, 0).

C

c(t) = (cos t, sin t)

t
c(0) = (1, 0)

Figure 33.3: The path [0, 2π]→ R2 : t 7→ (cos t, sin t).

The velocity at time t is:

c′(t) = (− sin t, cos t).

In this example we have a different interpretation of t also possible: t is
simply the measure of the angle between the x-axis and the line from the
origin to the location of the point.

A path c is said to be continuous if its x and y components xc and yc are
continuous. It is said to be differentiable at t if its x and y components are
differentiable at t. The velocity of c at time t is

c′(t) =
(
(xc)′(t), (yc)′(t)

)
. (33.2)

The speed of the path c at time t is defined to be

|c′(t)| =
√

(xc)′(t)2 + (yc)′(t)2 (33.3)



294 Ambar N. Sengupta 11/6/2011

33.2 Lengths of paths

Consider a path
c : [a, b]→ R2,

where a, b ∈ R and a < b. Let

P = {t0, t1, . . . , tN}

be a partition of [a, b], with

a = t0 < t1 < . . . < tN = b.

We think of these as time instants when we ‘observe’ the path and note
where it is. Suppose we approximate the path c by a path that travels in
a straight line from the initial point c(t0) to the next point c(t1), and then
straight to c(t2), and in this way till c(tN) = c(b). The length of this polygonal
approximation is

l(c;P ) = d (c(t0), c(t1)) + d (c(t1), c(t2)) + . . .+ d (c(tN−1), c(tN)) , (33.4)

where d(P,Q) means the usual distance between points P and Q:

d(P,Q) =
√

(xQ − xP )2 + (yQ − yP )2 (33.5)

where
P = (xP , yP ) and Q = (xQ, yQ).

If we refine the partition P by adding one more point, say s, which lies
between tj−1 and tj, then for the new partition P1 we have a corresponding
length

l(c;P1).

The difference between this and l(c;P ) is clearly

l(c;P1)− l(c;P ) = d (c(tj−1), c(s)) + d (c(s), c(tj)) − d (c(tj−1), c(tj)) ,

and this is ≥ 0 because of the triangle inequality for distances:

d(P, S) + d(S,Q) ≥ d(P,Q),

for any points P , S and Q.
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Thus adding points to a partition increases the length of the correspond-
ing polygonal approximation. So if P and P ′ are partitions of [a, b] with

P ⊂ P ′,

we have
l(c;P ) ≤ l(c;P ′). (33.6)

If we keep on adding points to a partition, making it finer and finer, intuitively
it is clear that the lengths of the polygonal approximations should approach
the ‘length’ of the path c itself. Hence we define the length of c to be

l(c) = sup
partitionsP of [a,b]

l(c;P ). (33.7)

If c has a continuous derivative then we have a clean and simple formula
for the length of c;

l(c) =

∫ b

a

√
(xc)′(t)2 + (yc)′(t)2 dt. (33.8)

Let us apply this to the circle

c(t) = (cos t, sin 2) t ∈ [0, 2π].

We have

l(c) =

∫ 2π

0

√
(− sin t)2 + (cos t)2 dt =

∫ 2π

0

1 dt = 2π,

confirming that the circumference of the unit circle is 2π.

33.3 Paths and Curves

The notion of a curve is natural but there are some choices available in
defining what it is precisely. Briefly, a curve is a path but without worrying
about the specific speed at which the path moves. Thus,

R→ R2 : t 7→ (t+ 1, sin(t+ 1))

and
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R→ R2 : t 7→ (t, sin t)

are the same curve, the only difference between them being that the second
path is always a bit ‘ahead’ of the first one.

On the other hand, the paths

R→ R2 : t 7→ (t, 2t)

and
R→ R2 : (t2, 2t2)

don’t correspond to the same curve because the second path always has x-
coordinate nonnegative whereas the first one has negative values of x.

We say that a path
c1 : [a, b]→ R2

is a reparametrization of a path

c2 : [a′, b′]→ R2

if
c2(t) = c1

(
φ(t)

)
for all t ∈ [a′, b′],

for some clock-changing mapping

φ : [a′, b′]→ [a, b] : t 7→ φ(t)

that is continuous and satisfies

φ(a′) = a and φ(b′) = b,

and
φ(p) < φ(q) if p < q

for all p, q ∈ [a, b]. Thus the path c2 is at time t where c1 is at time φ(t).
We can say that two paths which are reparametrizations of each other

correspond to the same curve. Alternatively, a curve is a path along with all
of its reparametrizations.

Here is an important observation:

Proposition 33.3.1 If a path c1 is a reparametrization of a path c2 then
they have the same lengths:

l(c1) = l(c2).

Thus we can speak of the ‘length of a curve’. This is also called arc length.
There is some flexibility in defining curves. One could insist, for example,

that only differentiable reparametrizations be allowed.
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33.4 Lengths for graphs

Consider now a function
f : [a, b]→ R

where a, b ∈ R with a < b. There is a corresponding natural path

[a, b]→ R2 : x 7→
(
x, f(x)

)
,

which traces out the graph of f ‘from left to right’. The length of this path
is ∫ b

a

√
1 + f ′(x)2 dx. (33.9)

Here is an example. The graph of

x2/3 + y2/3 = 1 (33.10)

had four parts, one in the positive quadrant and the others obtained by
reflections across the two axes. We will work out the length of the full curve
(a path that goes around the graph). This length is

4

∫ 1

0

√
1 + (y′)2 dx.

Now from the equation (33.10) we have on taking d/dx of both sides:

2

3
x−1/3 +

2

3
y−1/3y′ = 0,

and so, on doing the algebra, we have

y′ = −y
1/3

x1/3
.

Then

1 + (y′)2 = 1 +
y2/3

x2/3
=
x2/3 + y2/3

x2/3
=

1

x2/3

and so∫ 1

0

√
1 + (y′)2 dx =

∫ 1

0

√
1x2/3 dx =

∫ 1

0

x−1/3 dx =
x−1/3+1

−1
3

+ 1

∣∣∣1
0

=
3

2
.
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So the length of the full curve is

4 · 3

2
= 6.

Next consider the curve

y = x2 x ∈ [0, a],

for any a > 0. See Figure 33.4.

x

y
y = x2

a

Figure 33.4: Arc length for y = x2

The length is ∫ 1

0

√
1 + (y′)2 dx =

∫ a

0

√
1 + 4x2 dx

Recall that∫ √
1 + w2 dw =

1

2

[
w
√

1 + w2 + log(w +
√

1 + w2
]

+ C,

where C is an arbitrary constant. Using

w = 2x

then gives∫ √
1 + 4x2 2dx =

1

2

[
2x
√

1 + 4x2 + log(2x+
√

1 + 4x2
]

+ C,

and so, dividing by 2, we have∫ √
1 + 4x2 dx =

1

4

[
2x
√

1 + 4x2 + log(2x+
√

1 + 4x2
]

+ C,
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for an arbitrary constant C. Hence∫ a

0

√
1 + 4x2 dx =

1

4

[
2a
√

1 + 4a2 + log(2a+
√

1 + 4a2
]
.
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Chapter 34

Selected Solutions

Solutions for Exercise Set 8.9.

1. limx→1 5 = 5 because the sup’s and inf’s of the constant function 5 are
both 5 on any neighborhood of 1.

2. limx→1(x2 + 4x− 5
x
) = 12 + 4 · 1− 5

1
= 0, by the rules for limits.

3. limx→1
x2−9
x−3

= 12−9
1−3

= −8/(−2) = 4.

4. limx→1
x3−1
x2−1

lim
x→1

x3 − 1

x2 − 1
= lim

x→1

(x− 1)(x2 + x+ 1)

(x− 1)(x+ 1)

= lim
x→1

x2 + x+ 1

x+ 1
= 3/2.

5.

lim
x→1

x4 − 1

x2 − 1
= lim

x→1

(x− 1)(x3 + x2 + x+ 1)

(x− 1)(x+ 1)

= lim
x→1

x3 + x2 + x+ 1

x+ 1
= 4/2 = 2.

301
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6. limx→∞
1
x2

= 0.

7. limx→∞
4x3−3x+2
x2−x+1

lim
x→∞

4x3 − 3x+ 2

x2 − x+ 1
= lim

x→∞

x3
(
4− 3

x2
+ 2

x3

)
x2
(
1− 1

x
+ 1

x2

)
= lim

x→∞
x

(
4− 3

x2
+ 2

x3

)(
1− 1

x
+ 1

x2

)
=∞ · 4− 0 + 0

1− 0 + 0
=∞.

8.

lim
x→∞

5x6 − 7x+ 2

3x6 + x+ 2
= lim

x→∞

x6
(
5− 7

x5
+ 2

x6

)
x6
(
3 + 1

x5
+ 2

x6

)
= lim

x→∞

5− 7
x5

+ 2
x6

3 + 1
x5

+ 2
x6

=
5− 0 + 0

3 + 0 + 0
= 5/3.

9.

lim
x→∞

4x3 + sinx

2x3 +
√
x

= lim
x→∞

x3
(
4 + sinx

x3

)
x3
(
2 +

√
x

x3

)
= lim

x→∞

4 + sinx
x3

2 +
√
x

x3

=
4 + 0

2 + 0
= 2,

where we used (sinx)/x3 → 0 as x → ∞ by using, for example, the
‘squeeze theorem’: ∣∣∣∣sinxx3

∣∣∣∣ ≤ ∣∣∣∣ 1

x3

∣∣∣∣→ 0 as x→∞,

and also
√
x/x3 = 1

x3−1/2 → 0 as x→∞.
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10.

lim
x→∞

7x5 + x+ cos(x3)

2x5 − 5x2 + 1
= lim

x→∞

x5
(
7 + 1

x4
+ cosx3

x5

)
x5
(
2− 5

x3
+ 1

x5

)
= lim

x→∞

7 + 1
x4

+ cosx3

x5

2− 5
x3

+ 1
x5

=
7 + 0 + 0

2− 0 + 0
=

7

2
,

11. limx→∞
[√
x+ 1−

√
x
]

Sol: At first this looks like ∞ −∞ and that’s bad. In order to deterime
whether one of the two terms wins out over the other we need some
trick. Here is a method that works often when square-roots are in-
volved:

lim
x→∞

[√
x+ 1−

√
x
]

= lim
x→∞

[√
x+ 1−

√
x
] [√

x+ 1 +
√
x
]

√
x+ 1 +

√
x

= lim
x→∞

x+ 1 − x√
x+ 1 +

√
x

(using (A−B)(A+B) = A2 −B2)

= lim
x→∞

1√
x+ 1 +

√
x

= 0.
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12.

lim
x→∞

[√
3x2 + 1−

√
x2 + 1

]
= lim

x→∞

[√
3x2 + 1−

√
x2 + 1

] [√
3x2 + 1 +

√
x2 + 1

]
√

3x2 + 1 +
√
x2 + 1

= lim
x→∞

3x2 + 1 − (x2 + 1)√
3x2 + 1 +

√
x2 + 1

(using (A−B)(A+B) = A2 −B2)

= lim
x→∞

2x2√
x2
(
3 + 1/x2

)
+
√
x2(1 + 1/x2)

= lim
x→∞

2x2

x
√

3 + 1/x2 + x
√

1 + 1/x2

= lim
x→∞

2x2

x
[√

3 + 1/x2 +
√

1 + 1/x2
]

= lim
x→∞

2x√
3 + 1/x2 +

√
1 + 1/x2

=
∞√
3 + 1

=∞.

13. limx→∞
[√

4x4 + 2−
√
x4 + 1

]

Use the same method as for the previous problem and reach
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lim
x→∞

[√
4x4 + 2−

√
x4 + 1

]
= stuff

= lim
x→∞

3x4 + 1

x2
[√

4 + 2/x4 +
√

1 + 1/x4
]

= lim
x→∞

x4(3 + 1/x4)

x2
[√

4 + 2/x4 +
√

1 + 1/x4
]

= lim
x→∞

x2(3 + 1/x4)√
4 + 2/x4 +

√
1 + 1/x4

=
∞(3 + 0)

2 + 1
=∞.

14. limx→∞
√
x+1√
x

= limx→∞

√
x+1
x

= limx→∞

√
1 + 1

x
=
√

1 + 0 = 1.

15. limx→∞ x
[√
x2 + 2−

√
x2 + 1

]
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lim
x→∞

x

[√
x2 + 2−

√
x2 + 1

] [√
x2 + 2 +

√
x2 + 1

]
√
x2 + 2 +

√
x2 + 1

= lim
x→∞

x
(x2 + 2)− (x2 + 1)√
x2 + 2 +

√
x2 + 1

= lim
x→∞

x
1√

x2(1 + 2/x2) +
√
x2(1 + 1/x2)

= lim
x→∞

x
1

x
√

1 + 2/x2 + x
√

1 + 1/x2)

= lim
x→∞

x
1

x
(√

1 + 2/x2 +
√

1 + 1/x2)
)

= lim
x→∞

1√
1 + 2/x2 +

√
1 + 1/x2

=
1

1 + 1
=

1

2
.
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16.

lim
x→∞

√
x+ 2

[√
x+ 1−

√
x
]

= lim
x→∞

√
x+ 2

[√
x+ 1−

√
x
] [√

x+ 1 +
√
x
][√

x+ 1 +
√
x
]

= lim
x→∞

√
x+ 2

x+ 1 − x√
x+ 1 +

√
x

= lim
x→∞

√
x+ 2

1√
x+ 1 +

√
x

= lim
x→∞

√
x(1 + 2/x)

1√
x(1 + 1/x) +

√
x

= lim
x→∞

√
x
√

1 + 2/x
1

√
x
√

1 + 1/x+
√
x

= lim
x→∞

√
x
√

1 + 2/x
1

√
x
(√

1 + 1/x+ 1
)

= lim
x→∞

√
1 + 2/x

1√
1 + 1/x+ 1

= 1 · 1

1 + 1
=

1

2
.

17. limθ→0
sin(θ2)
θ2

= limy→0
sin y
y

= 1, on setting

y = θ2

and noting that y → 0 as θ → 0.

18. limθ→0
sin2(θ)
θ2

= limθ→0

(
sin θ
θ

)2
= 12 = 1

19. limθ→π/6
sin(θ−π/6)
θ−π/6 = limx→0

sinx
x

= 1, on setting

x = θ − π/6
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and noting that this → 0 as θ → π/6.

20. limx→0 x
21Q(x) = 0 from the ‘squeeze’ theorem on using

0 ≤
∣∣x21Q(x)

∣∣ ≤ x2 → 0 as x→ 0.

21. limx→0 x(1− x)1Q(x) = 0 from the ‘squeeze’ theorem on using

|x(1− x)1Q(x)| ≤ |x(1− x)| → 0 as x→ 0.

22. limx→1 x(1− x)1Q(x) = 0 from the ‘squeeze’ theorem on using

|x(1− x)1Q(x)| ≤ |x(1− x)| → 0 as x→ 1.

23. Explain why limx→3 x(x− 1)1Q(x) does not exist.

Sol: Near x = 3 the supremum of the values x(x− 1)1Q(x) is around 3(3−
1) = 6 (actually, more than this, because if x > 3, with x rational, then
x(x− 1)1Q(x) = x(x− 1) > 3(3− 1)), whereas the inf is 0 on taking x
irrational.

24. Explain why limx→∞ cosx does not exist.

Sol: cos x oscillates between 1 and −1 as x runs from any integer multiple
of 2π (such as 0, 2π, 4π, 6π,...) and the next higher such multiple. So
for any positive real number t we have

sup
x∈(t,∞)

cosx =∞, and inf
x∈(t,∞)

cosx = −1.
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Since there is no unique value lying between 1 and −1, the limit
limx→∞ cosx does not exist.

25. Explain why limx→∞ x sinx does not exist.

Sol: sinx oscillates between 1 and −1 as x runs from any integer multiple
of 2π (such as 0, 2π, 4π, 6π,...) and the next higher such multiple. So
for any positive real number t we have

sup
x∈(t,∞)

sinx =∞, and inf
x∈(t,∞)

sinx = −1.

Since there is no unique value lying between 1 and −1, the limit
limx→∞ sinx does not exist.

26. Explain why limx→∞
sinx
x

= 0.

Sol: This follows, for instance, by the ‘squeeze’ theorem on observing that∣∣∣∣sinxx
∣∣∣∣ ≤ ∣∣∣∣1x

∣∣∣∣→ 0 as x→∞.

27. Explain why limx→∞
sinx√
x

= 0.

Sol: This follows, for instance, by the ‘squeeze’ theorem on observing that∣∣∣∣sinx√x
∣∣∣∣ ≤ ∣∣∣∣ 1√

x

∣∣∣∣→ 0 as x→∞.

Solutions for Exercise Set 21.1.

(i) For the set
S = [−∞,−1) ∪ (1, 2] ∪ {6, 8} ∪ [9,∞]

write down
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(i) an interior point: −2

(ii) a limit point: −5.

(iii) a boundary point: −1

(iv) an isolated point: 6.

(v) the interior S0 = [−∞,−1) ∪ (1, 2) ∪ (9,∞]

(vi) the boundary ∂S =

Sol: ∂S = {−1, 1, 2, 6, 8, 9}. Note that −∞ and ∞ are interior point
of S.

2. Answer and explain briefly:

(i) If 4 < supT is 4 an upper bound of T?

(ii) In (i), is there a point of T that is > 4?

(iii) If inf T < 3 is 3 a lower bound of T?

Sol: Since inf T is the greatest lower bound of T , it follows that 3, being
> inf T , is not a lower bound of T .

(iv) In (iii), is there a point of T that is < 3?

Sol: Since 3 is not a lower bound of T there must be a point of T that
is < 3.

3. Answer the following concerning limits, with brief explanations:

(i) If limx→1 F (x) = 2 does it follow that F (1) = 2?
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Sol: No, the definition of the limit limx→1 F (x) contains no information
about the value of F at 1. For example,

F (x) =

{
2x for all x 6= 1;

0 if x = 1.

has limx→1 F (x) = 2 but F (1) = 0.

(ii) If g is continuous at 3 is g differentiable at 3?

Sol: No, a function can be continuous at a point without being differ-
entiable at that point. For example, the function g given by

g(x) = |x− 3| for all x ∈ R,

is continuous everywhere but is not differentiable at 3.

(iii) If g is differentiable at 5 is g continuous at 5?

Sol: Yes, we have proved that if a function is differentiable at a point
then it is continuous at that point.

(iv) If h′(5) = 4 and h(5) = 8 then limx→5 h(x) =

Sol: Since h′(5) = 4 the function h is differentiable at 5. Therefore it
is continuous at 5. Hence limx→5 h(x) is equal to h(5), which is
given to be 8. Thus, limx→5 h(x) = 8.

(v) If H ′(2) = 5 and H(2) = 3 then limw→2
H(w)−3
w−2

=

Sol: The limit here is

lim
w→2

H(w)− 3

w − 2
= lim

w→2

H(w)−H(2)

w − 2
.

We recognize this to be the derivative H ′(2), which is given to be
5. Thus the value of the limit is 5.

(vi) If G′(5) = 1 and G(5) = 6 then limy→5
G(y)−6
y−5

=

Sol: The limit here is

lim
y→5

G(y)− 6

y − 5
= lim

y→2

G(y)−G(5)

y − 5
.

We recognize this to be the derivative G′(5), which is given to be
1. TThus the value of the limit is 1.
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(vii) limw→0
sinw
w

=

Sol: This is 1.

(viii) limw→π/3
sinw−sin(π/3)

w−π/3 =

Sol: We recognize this limit as the derivative of sin at π/3, and so its
value is sin′(π/3) = cos π/3 = 1/2.

(ix) If G′(3) = 4 then

lim
h→0

G(3 + h)−G(3)

h
=

Sol: We recognize this limit as the derivative of G at 3 and so its value
is G′(3) = 4, as given.

4. Work out the following derivatives:

(i) d
√
w4−2w2+4
dw

Sol: Using the chain rule we have

d
√
w4 − 2w2 + 4

dw
=

1

2
√
w4 − 2w2 + 4

(4w3 − 4w + 0)

(ii)
d[(1+

√
y) tan y]

dy

Sol: Using the product rule we have

d[(1 +
√
y) tan y]

dy
=
d[(1 +

√
y)

dy
tan y + (1 +

√
y)
d tan y

dy

=

(
0 +

1

2
√
y

)
tan y + (1 +

√
y) sec2 y

(iii)
d[

1+
√
y

tan y
]

dy
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Sol: Using the quotient rule we have

d[
1+
√
y

tan y
]

dy
=

tan y
d(1+

√
y)

dy
− (1 +

√
y)d tan y

dy

tan2 y

=
tan y(0 + 1

2
√
y
)− (1 +

√
y) sec2 y

tan2 y

=
(tan y) 1

2
√
y
− (1 +

√
y) sec2 y

tan2 y

(iv) d cotx
dx

Sol: Using the quotient rule we have

d cotx

dx
=
d cosx

sinx

dx

=
sinx · (− sinx) − cosx · cosx

sin2 x

=
−(sin2 x+ cos2 x)

sin2 x

= − 1

sin2 x
= − csc2 x.

(v)
d sin(cos(tan(

√
x)))

dx

Sol: Using the chain rule repeatedly we have

d sin (cos (tan (
√
x)))

dx
= cos

(
cos
(
tan
(√

x
)))
·
[
− sin

(
tan
(√

x
))]

·
[
sec2

(√
x
)]
· 1

2
√
x



314 Ambar N. Sengupta 11/6/2011

5. Using the definition of the derivative, show that

d(1
√
x)

dx
= − 1

2x
√
x
.

Sol:

d(1
√
x)

dx
= lim

w→x

1√
w
− 1√

x

w − x

= lim
w→x

√
x−
√
w√

w
√
x

w − x

= lim
w→x

√
x−
√
w

(w − x)
√
w
√
x

= lim
w→x

(
√
x−
√
w)(
√
x+
√
w)

(w − x)
√
w
√
x(
√
x+
√
w)

= limw→x
(
√
x)2 − (

√
w)2

(w − x)
√
w
√
x(
√
x+
√
w)

= lim
w→x

x− w
(w − x)

√
w
√
x(
√
x+
√
w)

= lim
w→x

−1√
w
√
x(
√
x+
√
w)

= − 1√
x
√
x · 2
√
x

= − 1

2x
√
x

(34.1)

Solutions for Exercise Set 20.4.

1. Find the maximum and minimum values of x2 for x ∈ [−1, 2].

Sol: The deriative of f(x) = x2 is 2x, which is 0 at x = 0. Of the values
f(0) = 0, f(−1) = 1, and f(2) = 4, the minimum value is 0 and the
maximum is 4.

2. Find the maximum and minimum values of x(6−x)(3−x) for x ∈ [0, 2].

Sol: For f(x) = x(6 − x)(3 − x) = x3 − 9x2 + 18x, we have f ′(x) = 3x2 −
18x + 18, and this is 0 when x2 − 6x + 6 = 0, the solutions of which
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are 3 ±
√

3 (instead of using the formula for solutions of quadratic
equations it is easier to observe that x2 − 6x+ 6 = x2 − 2 ∗ 3x+ 9 = 3
and this is (x − 3)2 = 3. Now 3 +

√
3 is not in [0, 2] and 3 −

√
3 is in

[0, 2]. We compare the values f(0) = 0, f(2) = 8, and f(3 −
√

3) =
(3−

√
3)(3 +

√
3)
√

3 = 6
√

3 ' 10.39. So the maximum of f on [0, 2] is
6
√

3 at x = 3−
√

3, and the minimum is 0 at x = 0.

3. A wire of length 12 units is bent to form an isosceles triangle. What
should the lengths of the sides of the triangle be to make its area
maximum?

Sol: Let the sides be x, x, and 2y (it will be clear soon that it is better
to take the third side to be 2y than y, the algebra being a bit easier).
Then 2x+ 2y = 12, so x+ y = 6. The minimum possible value of y is
0 (the triangle collapses into a line then) and the maximum value of y
is 3 (again the triangle collapses into a flat line).

x x

y y

h

x2 = y2 + h2

h =
√
x2 − y2

A =
1

2
2yh = y

√
x2 − y2

= y
√

6− y)2 − y2 = y
√

36− 12y

Thus y ∈ [0, 3]. Since we have to work out the derivative of A′ it
will be a little easier, for algebra, to actually work the maximizing
A2 = y2(36 − 12y) = 36y2 − 12y3 rather than A (of course, then we
can just take the square root at the end). The derivative is (A2)′ =
72y− 36y2 = 36y(2− y). This is 0 at y = 0 and at y = 2, both of these
being in [0, 3]. When y = 0 or y = 3 then A is 0. So the maximum
must occur when y = 2 and this value is 2

√
36− 12 ∗ 2 = 4

√
3.

4. A piece of wire is bent into a rectangle of maximum area. Show that
this maximal area rectangle is a square.

Sol: Let L be the length of wire, and the suppose the rectangle has sides
x and y. Then the perimeter is 2x + 2y = L, thus x + y = L/2. The



316 Ambar N. Sengupta 11/6/2011

area is A = xy. Thus the problem is to maximize the product of two
numbers given that their sum is L/2. We write A as A = x(L/2−x) =
(L/2)x−x2. The restriction of x is that it lies in [0, L/2]. We know that
the maximum value of a quadratic can be obtained without calculus,
but it is simple to work out the derivative A′ = L/2− 2x and observe
that this is 0 when x = L/4. Then y = (L/2) − (L/4) = L/4. Thus
the rectangle has equal sides, which means that it is a square. This
confirms intuition.

5. A piece of wire of length L is cut into pieces of length x and L − x
(including the possibilty that x is 0 or L), and each piece is bent into a
circle. What is the value of x which would make the total area enclosed
by the pieces maximum, and what is the value of x which would make
this area minimum.

Sol: If a length x is bent into a circle the radius of the circle is x/(2π).

The area is π
[
x/(2π)

]2
. For the remaining length L − x the area is

π
[
(L− x)/(2π)

]2
. Thus the total area is

A(x) = π
[
x/(2π)

]2
+ π
[
(L− x)/(2π)

]2
=

1

4π
x2 +

1

4π
(L− x)2.

The value x lies in [0, L]. The derivative of A is

A′(x) =
1

2π
x+

1

2π
(L− x)(−1) =

1

2π
(2x− L).

This is 0 when x = L/2, that is, with the wire split into two equal
pieces. The area enclosed is then

A(L/2) =
1

4π
(L/2)2 +

1

4π
(L− L/2)2 =

L2

8π
.

The end point values for x are 0 and L, corresponding to rolling the wire
up into just one large circle of length L/(2π); its area is A(0) = 1

4π
L2.

Thus the minimum are is obtained by splitting the wire into two equal
pieces, each rolled into a circle, and the maximum area is obtained by
rolling up the entire length of wire into a circle.

6. Here are some practice problems on straight lines and distances:
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(i) Work out the distance from (1, 2) to the line 3x = 4y + 5

(ii) Work out the distance from (2,−2) to the line 4x− 3y − 5 = 0.

(iii) Find the point P0 on the line L, with equation 3x + 4y − 7 = 0,
closest to the point (0, 3). What is the angle between P0P and
the line L?

(iv) Let P0 be the point on the line L, with equation 3x+ 4y−11 = 0,
closest to the point P (1, 3). What is the slope of the line PoP?

(v) Let P0 be the point on the line L, with equation 3x+ 4y−11 = 0,
closest to the point P (1, 3). Find the equation of the line through
P and P0.

Solutions for Exercise Set 32.5.

(a) Work out the following integrals using substitutions:

i. Use

u = 4− 3x and du = −3dx.

So then

dx = −1

3
du.

∫
(4− 3x)2/3 dx =

∫
u2/3

(
−1

3
du

)
= −1

3

∫
u2/3 du

= −1

3

1
2
3

+ 1
u

2
3

+1 + C

= −1

5
(4− 3x)5/3 + C.

(34.2)

ii. Use

y = 2 + 5x and dy = 5dx.
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Then ∫ √
2 + 5x dx =

∫
√
y

1

5
dy

=
1

5

∫
y1/2 dy

=
1

5

1
1
2

+ 1
y

1
2

+1 + C

=
1

5

2

3
y3/2 + C

=
2

15
(2 + 5x)3/2 + C.

(34.3)

iii. Use
w = 2− 3x and dw = −3dx.

So

dx = −1

3
dw.

Then ∫
1√

2− 3x
dx =

∫
1√
w

(
−1

3

)
dw

= −1

3

∫
1√
w
dw

= −1

3

∫
w−1/2 dw

= −1

3

1

−1
2

+ 1
w−

1
2

+1 + C

= −2

3
w1/2 + C

= −2

3
(2− 3x)1/2 + C.

(34.4)

iv. Use
y = 3− 2x.

Then

dy = −2dx and dx = −1

2
dy.
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x(3− 2x)4/5 dx =

∫
xy4/5

(
−1

2
dy

)
= −1

2

∫
3− y

2
y4/5 dy (using x = 3−y

2
)

= −1

4

∫
(3y4/5 − y9/5) dy

= −1

4

[
3

1
4
5

+ 1
y

4
5

+1 − 1
9
5

+ 1
y

9
5

+1

]
+ C

= − 5

12
y9/5 +

5

56
y7/5 + C

= − 5

12
(3− 2x)9/5 +

5

56
(3− 2x)7/5 + C

(34.5)

v.
∫

x
(2+5x)3/5

dx

Use the substitution

y = 2 + 5x.

Then

dy = 5dx,

and

x =
1

5
(y − 2).
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So∫
x

(2 + 5x)3/5
dx =

∫ 1
5
(y − 2)

y3/5

1

5
dy

=
1

25

∫
y − 2

y3/5
dy

=
1

25

∫ [
y

y3/5
− 2

y3/5

]
dy

=
1

25

[∫
y2/5 dy − 2

∫
y−3/5 dy

]
=

1

25

[
1

2
5

+ 1
y

2
5

+1 − 2
1

−3
5

+ 1
y−

3
5

+1

]
=

1

25

[
5

7
y7/5 − 5y2/5

]
+ C

=
1

25

[
5

7
(2 + 5x)7/5 − 5(2 + 5x)2/5

]
+ C.

(34.6)

vi.
∫

2x+1√
x2+x+5

dx Use y = x2 + x + 5, for which dy = (2x + 1)dx
and so the integral becomes∫

dy
√
y

= 2

∫
dy

2
√
y

= 2
√
y + C = 2

√
x2 + x+ 5 + C.

vii.
∫
e−x

2/2x dx

viii. Use y = −x2/2, for which

dy = −xdx

and so∫
e−x

2/2x dx =

∫
ey(−dy) = −

∫
ey dy = −ey+C = −e−x2/2+C.

ix.
∫ √log(2x+5)

2x+5
dx
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Use y = log(2x+ 5), for which

dy =
1

2x+ 5
2dx

and then∫ √
log(2x+ 5)

2x+ 5
dx =

∫
√
y

1

2
dy =

1

2

∫
y1/2 dy

and this equals 1
2

1
3/2
y3/2 + C and so∫ √

log(2x+ 5)

2x+ 5
dx =

1

3
(log(2x+ 5))3/2 + C.

x.
∫

1
x log(x) log(log x)

dx
Using y = log x converts the integral to∫

1

y log y
dy

and then w = log y converts this to
∫

1
w
dw = logw + C, and

so ∫
1

x log(x) log(log x)
dx = log log log x+ C.

xi. ∫
sin(5x) cos(2x) dx =

∫
1

2
[sin(5x+ 2x) + sin(5x− 2x)] dx

=
1

2

[
−1

7
cos(7x)− 1

3
cos 3x

]
+ C

(34.7)

xii. ∫
sin(5x) sin(2x) dx =

∫
1

2
[cos(5x− 2x)− cos(5x+ 2x)] dx

=
1

2

[
1

3
sin 3x− 1

7
sin 7x

]
+ C

(34.8)
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xiii.
∫

cos(5x) cos(2x) dx = 1
2

[
1
7

sin 7x+ 1
3

sin 3x
]

+ C

xiv.
∫

sin3 x dx

sin3 x = sinx sinx sinx

=
1

2
[cos 0− cos(2x)] sinx

=
1

2
[1− cos 2x] sinx

=
1

2
[sinx− sinx cos 2x]

=
1

2

[
sinx− 1

2
[sin 3x+ sin(−x)]

]
=

1

2
sinx− 1

4
[sin 3x− sinx]

=
1

2
sinx+

1

4
sinx− 1

4
sin 3x

=
3

4
sinx− 1

4
sin 3x

(34.9)

Integration gives∫
sin3 x dx = −3

4
cosx+

1

12
cos 3x+ C.

xv.
∫

cos3 x dx

cos3 x = cosx cosx cosx

=
1

2
[cos 0 + cos(2x)] cosx

=
1

2
[1 + cos 2x] cosx

=
1

2
[cosx+ cosx cos 2x]

=
1

2

[
cosx+

1

2
[cos 3x+ cos(−x)]

]
=

1

2
cosx+

1

4
[cos 3x+ cosx]

=
3

4
cosx+

1

4
cos 3x

(34.10)
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Integration gives

∫
cos3 x dx =

3

4
sinx+

1

12
sin 3x+ C.

xvi. ∫
sin2(5x) dx =

∫
sin(5x) sin(5x) dx =

∫
1

2
[cos 0− cos(5x+ 5x)] dx

and so

∫
sin2(5x) dx =

1

2

∫
[1− cos(10x)] dx =

1

2

[
x− 1

10
sin 10x

]
+C.

xvii.
∫ √

3− 6x− x2 dx
Completing the square for x2 + 6x− 3 we have

x2 + 6x− 3 = x2 + 2 ∗ 3 ∗ x+ 32 − 32 − 3 = (x+ 3)2 − 12

and so the integral is

∫ √
12− (x+ 3)2 dx

Substitute

x+ 3 =
√

12 sin θ

for which

dx =
√

12 cos θ dθ
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and so∫ √
12− (x+ 3)2 dx =

∫ √
12− 12 sin2 θ

√
12dθ

=
√

12

∫ √
12(1− sin2 θ) cos θ dθ

= 12

∫
cos θ cos θ dθ

= 12

∫
cos2 θ dθ = 12

∫
1

2
[cos 0− cos(2θ)] dθ

= 6

∫
[1− cos 2θ] dθ

= 6

[
θ − 1

2
sin 2θ

]
+ C

= 6 [θ − sin θ cos θ] + C

(34.11)

Now substitute back in

sin θ =
x+ 3√

12
and cos θ =

√
12− (x+ 3)2

to get∫ √
12− (x+ 3)2 dx = 6

[
sin−1 x+ 3√

12
− x+ 3√

12

√
12− (x+ 3)2

]
+C.

xviii.
∫

1√
3−6x−x2 dx
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arc length, 296

absolute value
definition, 41
larger of x and −x, 42

AM-GM inequality, 212
angle

as a pair of rays, 69
Archimedes, 12

boundary
notation ∂S, 37

boundary points, 36

Cartesian product, 19
chain rule

initiating examples, 137
proof, 146
statement, 139

chainrule
dy/dx form, 145

closed sets, 39
complements of open sets, 40

codomain
of a function, 20

complement, 17
completeness

existence of suprema, 31
of R, 31
of R∗, 31

completing squares, 153

composite function, 138
composite functions, 66
composites

of continuous functions, 88
concave function, 206

strictly concave, 206
continuity

at a point, 85
continuous

at a point, 85
at exactly one point, 87
at exactly two points, 88
nowhere, 87
on a set, ambiguity, 87

continuous functions, 86
composites of, 88
polynomials, 86

convergence
of
∑

n 1/n2, 259
convex combination, 210, 218
convex function, 205

strict convexity, 206
cosecant function csc, 74
cosine

geometric meaning, 70
cotangent function cot, 74
curve

definition, 296

decreasing functions, 102
dense

326



DRAFT Calculus Notes 11/17/2011 327

irrationals in R, 51
rationals in R, 51

dense subset
Q in R, 26
Qc in R, 26

derivative
as slope of tangent line, 116
at a point, 116
definition, 116
finiteness implies continuity, 131
notation df(x)

dx
, 118

notation df(x)/dx, 117
notation f ′(p), 116, 117
of constant is 0, 116
sign of, 175–179
zero and constancy, 180

derivatives
algebraic rules, 133

differential df , 246
differential form, 247
differential forms

working rules, 248
discontinuity

removable, 86
discriminant, 155
distance

on R, 43
triangle inequality, 43

divergence
of
∑

n 1/n, 261
domain

of a function, 20
dummy variable, 252

elements, 13
empty set

as subset, 16
empty set ∅, 14

extended real line R∗, 26
exterior points, 36

factorials, 23
functions, 19

definition, 20

graph
of a function, 20
of a function f , 114
of unit circle, 22

greatest lower bound, 30

harmonic series
divergence, 261

Hausdorff property, 35
Havil, Julian, 325

increasing functions, 102
indefinite integral, 252
indicator function, 51
infimum

larger for larger set, 32
notation inf S, 30
of ∅, 31

integers, 18
integrability

and continuity, 240
integral

of a differential, 248
of a differential form, 253

integrand, 269
integration

by parts, 286
by substitution, 269

interior
notation S0, 37

interior point, 35
intermediate value theorem, 93
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constructing rational powers, 95
with intervals, 94

intersections, 17
interval, 33
inverse sin: sin−1 or arcsin, 100
inverse function, 99, 103

derivative of, 204
inverse trigonometric functions, 99
irrational numbers, 18
irrationals, 26

L’Hospital’s rule, 225
least upper bound, 30
length

of a path, 295
lHospital’s rule

proof, 228
limit

as unique value between suprema
and infima, 47

notation, 49
of 1/x as x→ 0+, 51
of 1/x as x→ 0−, 51
of 1/x as x→ −∞, 50
of 1/x as x→∞, 49

limits
‘squeeze’ theorem, 65
‘squeezing’, 64
and ratios, 63
between suprema and infima, 54
by comparision, 64
definition with neighborhoods, 61
of composites, 66
of sums, 61
products, 62
the notion, 46
with neighborhoods, 59

linear combination, 220

local maximum, 168
local minmum, 168
log

and exp, 193
as inverse exp, 193
graph, 194
notation ln, 193

logarithm
definition using 1/x, 255

lower bounds, 30
of ∅, 30

magnitude, 41
Maor, Eli, 325
mappings

definition, 20
maps

definition, 20
maxima and minima

existence, 107, 111
with infinities, 110

Mean Value Theorem, 172
for l’Hospital’s rule, 228

minimizing quadratics, 152
monotone function, 103

Nahin, Paul J., 325
Napier, John, 325
neigborhoods, 34
neighborhoods

and distance, 43
of ±∞, 34

open sets, 38
complements of closed sets, 40
finite intersections, 39
unions are open, 39

ordered pairs, 18
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polygonal approximation
to paths, 294

powers
rational, definition, 196
real, definition, 196

product rule
and integration, 286

quadratic equations
solutions, 154

quasi-tangents
definition, 115
flat at interior maxima/minima,

168
Rolle’s theorem, 172
uniqueness and tangents, 115

radian measure, 70
Ramanujan formula, 12
range

of a function, 21
rational numbers, 18

notation Q, 18
real line, 26
real numbers, 18, 26

notation R, 26
Riemann integral

definition, 236
Riemann sum, 237
Rolle’s Theorem, 171
Rolle’s theorem

with derivatives, 172

secan function sec , 74
secant

to a graph, 114
semi-chord

and sin, 71
set theory, 13

sets, 13
equality, 14
intersections of, 17
unions of, 17

sin
geometric meaning, 70

squeeze theorem, 64
strictly decreasing functions, 102
strictly increasing functions, 102
subsets, 15

properties, 16
sum of cubes 13 + · · ·+N3, 268
sum of squares 12 + · · ·+N2, 267
summation notation, 53
supporting line, 216

and tangent line, 216
supremum

notation supS, 30
of ∅, 31
smaller for larger set, 32

tan
geometric meaning, 70

tangent
and maxima/minima, 168

tangent line
and supporting line, 216
definition, 114

triangle inequality
for distance, 43
for magnitudes, 42

trigonometric functions
sin(1/x) and cos(1/x), 79
sin2 + cos2 = 1, 74
addition formulas, 75
bounds, 77
bounds for (sinx)/x, 77
continuity, 78
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geometric meanings, 70
periodicity 2π, 73
the limit limx→0

sinx
x

= 1, 78
values at 0, 73
values at π/2, 73
values at a and −a, 74
values at a and 2a, 76

uniform continuity, 240
unions, 17
upper bounds, 29

for ∅, 29

velocity
of a path, 293

weights, 219
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